Resource Management Problem in NOMA-based MEC systems

Giang Huong Pham

Computer Communications Lab, The University of Aizu

CCL Winter Camp 2022, Mar. 14th

Outline

- Non-Orthogonal multiple access based Mobile edge computing (NOMAbased MEC) systems
- Resource management problem in NOMA-based MEC systems
 - Whale optimization algorithm (WOA)
 - Simulation results & Conclusions

Mobile Edge Computing

Fig: Hierarchical MEC architecture [2]

- MEC provides *cloud services* (computation, storage capacities) at the *network edge*, close to end users
 - Enable computation intensive applications to resources limited devices
 - Enable delay sensitive applications, reduce end-to-end delay

Non-orthogonal multiple access

- NOMA serves multiple devices in a resource block (RB)
- NOMA can be devided into two categories
 - Code-domain NOMA
 - Power-domain NOMA

Fig: The difference between OMA, NOMA, the resource allocated to different user is colored differently[3]

- How can power-domain NOMA (NOMA) serve multiple users?
 - Superposition coding (SC) at the transmitter side, and
 - Successive interference cancellation (SIC) at the receiver side

Superposition coding NOMA

• SC superposes the signals from multiple users to simultaneously transmit the information $X(n) = \sqrt{P\beta_1} S_1(n) + \sqrt{P\beta_2} S_2(n)$

Fig: An example of SC encoding (a) $S_1(n)$ with higher transmitting power $\sqrt{P\beta_1}$, channel gain h_1 (b) $S_2(n)$ with lower transmitting power $\sqrt{P\beta_2}$, channel gain h_2 ($|h_2| > |h_1|$) (c) Superposed signal X(n) [4]

• NOMA exploits the channel gain difference between multiplexed users. $\frac{P_2 |h_2|^2}{P_1 |h_1|^2} \ge \gamma_{th}$, $P_1 = \sqrt{P\beta_1}$, $P_2 = \sqrt{P\beta_2}$

Successive interference cancellation NOMA

- SIC allows user signals are successively decoded
- In uplink, the base station successively decodes and cancels the signals of strong users (users with higher channel gain), prior to decoding the signals of weak users

Fig: NOMA in an uplink scenario[4]

• In downlink, strong users successively decode and cancel the signals of

the weak users, prior to decoding their own signals

Fig: NOMA in a downlink scenario [4]

NOMA-based MEC systems

- Taking advantages of NOMA and MEC:
 - Spectral effificiency in the scare communication systems
 - Enable computation-intensive, delay-sensitive applications
- We consider a NOMA-based MEC system:
 - I MEC server
 - N user equipment (UE)
 - $N = \{1, 2, ..., N\}$ that

have computional tasks

• S subchannels (SC) $S = \{1, 2, \dots, S\}$

Fig: A cellular NOMA-based MEC system with N = 4, S = 2 h_{ij} : the channel gain of UE i over SC jUE 2, 3 use the same SC 2

Resource management problem in NOMA-based MEC systems

• Objective:

To minimize both completion time and energy consumption of UEs By maximize the system utility (function of time and energy consumption)

UE i	Remote Execution		Local Execution	
	Time	Energy	Time	Energy
Uplink	T_i^{off}	E_i^{off}		
Execution	T_i^{exe}		T_i'	E_i'
Downlink	omitted			
Total	T _i	E ^r	T_i^{\prime}	E_i^{\prime}

- Resource management:
 - Computing resource allocation (CRA): CPU frequency of the MEC server for offloaded tasks?
 - Transmit power control(TPC): transmit power of UEs to offload ?
 - SC assignment (SA): user-grouping over SCs?

Whale Optimization Algorithm

- A heuristic optimization algorithm
- Mimic the bubble net hunting behavior of humpback whales

Fig: The buble-net hunting behavior of humpback whales [5]

• The humpback whale moves along the bubles of the net until reach the targeted fishes (the optimal solution)

We apply WOA to address TCP, and SA;

CRA is solved by a convex optimization technique

Simulation results

System parameters

Ii		Task of UE <i>i</i>
N = 18		# UEs
<i>S</i> = 5		# SCs
r = 250	m	Cell radius
<i>α</i> _{<i>i</i>} = 420	kbits	Input data size of I_i
β _i = 1000	cycles	CPU requirement for completing I_i
f_0	cycles/s	CPU frequency of server
$p_i^0 = 24$	dBm	Max transmit power of UE i
<i>W</i> =1	Hz	Bandwidth of SC <i>j</i>
$\lambda_t = 0.5$		UE's <i>i</i> preference coefficient in time

Simulation results & Conclusions

- Proposed resource management with WOA brings the sub-optimal solution with small optimality gap while greatly reduced the execution time

Fig: Our resource management for NOMA-based MEC systems by WOA (ODSTCA) vs. Exhaustive search (EX)

Fig: ODSTCA compared with other scenarios ARJOA: All remote joint optimization algorithm IOJOA: Independent offloading joint optimization algorithm OFDMA: OFDMA-based MEC systems ALCA: all locally computation algorithm - Proposed NOMA-based MEC yields a good performance compared to other scenarios

References

[1] Y. Liu, M. Peng, G. Shou, Y. Chen and S. Chen, "Toward Edge Intelligence: Multiaccess Edge Computing for 5G and Internet of Things," in *IEEE Internet of Things Journal*, vol. 7, no. 8, pp. 6722-6747, Aug. 2020, doi: 10.1109/JIOT.2020.3004500.

[2] Y. Zhang, "Mobile Edge Computing", in Simula SpringerBriefs on Computing, doi: 10.1007/978-3-030-83944-4

[3] Cheon, Jinyong, and Ho-Shin Cho. "Power allocation scheme for non-orthogonal multiple access in underwater acoustic communications." Sensors 17.11 (2017): 2465.

[4] S. M. R. Islam, N. Avazov, O.A. Dobre and K. Kwak, "Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges," in *IEEE Communications Surveys & Tutorials*, vol. 19, no. 2, pp. 721-742, Secondquarter 2017, doi: 10.1109/COMST.2016.2621116.

[5] Q. Pham, S. Mirjalili, N. Kumar, M. Alazab and W. Hwang, "Whale Optimization Algorithm With Applications to Resource Allocation in Wireless Networks," in *IEEE Transactions on Vehicular Technology*, vol. 69, no. 4, pp. 4285-4297, April 2020, doi: 10.1109/TVT.2020.2973294.

Thank you for your attention

Resource management problem in NOMA-based MEC systems

