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Use case: Optimizing the time-average energy 
subject to queue stability 

𝑤! 𝑡 :	 environmental	variable	at	time	𝑡 (i.i.d over	slots)
𝛼!(𝑡):	 control	action	at	time 𝑡,	

determined	based	on	𝑄! 𝑡 , 𝑎! 𝑡 , and		𝑤!(𝑡)
𝑒!(𝑡) : energy cost for action 𝛼! 𝑡 ,

deterministic as 𝑒! 𝑡 = 𝑓"(𝛼! 𝑡 , 𝑤! 𝑡 )
𝑏!(𝑡): output of action 𝛼! 𝑡 ,

deterministic as 𝑏 𝑡 = 𝑓#(𝛼! 𝑡 )

minimize: lim
$→&

'
$
∑()*+,'𝐸[𝑒!(𝑡)]

subject to: lim
(→&

- .! (
(

= 0

Time-average 
energy

Queues are mean-rate stable
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𝑎!(𝑡) 𝑏!(𝑡)

𝑄! 𝑡 + 1 = max 𝑄! 𝑡 + 𝑎!(𝑡) − 𝑏! 𝑡 , 0

𝑄! 𝑡

𝑤! 𝑡

𝛼!(𝑡)



Use case: Optimizing the time-average energy 
subject to queue stability 

• Greedy approach: 
• Try to process a!(𝑡) as much as possible in each 

time slot to achieve queue stability
-> may not energy-efficient 
-> Any alternative? 

• Alternatively, limit 𝑏!(𝑡) in each time slot to minimize 
the energy consumption
-> then, how to control queue stability? 

• Classical optimization: 
• Complete information is assumed, i.e., 
𝑎!(𝑡) & 𝑤! 𝑡 , 𝑡 = 0,1,2, … are all available at the beginning,  

• Optimal solution could be obtained
• But, how do we know the future for real-time control? 
• Online optimization is indeed needed
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minimize: 𝐸[𝑒!(𝑡)]

subject to: lim
(→&

- .! (
(

= 0

𝑎!(𝑡) 𝑏!(𝑡)

𝑄! 𝑡 + 1 = max 𝑄! 𝑡 + 𝑎!(𝑡) − 𝑏! 𝑡 , 0

𝑄! 𝑡

𝑤! 𝑡

𝛼!(𝑡)



Lyapunov drift: An approach for dealing with 
queue stability for dynamic systems
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For each slot, define:

Define the vector of queue backlogs at time t by

(Suppose there are N queues in the network)

The Lyapunov drift:

Suppose the second moments of arrivals and service 
in each queue are bounded: 

𝑎!(𝑡) 𝑏!(𝑡)

𝑄! 𝑡 + 1 = max 𝑄! 𝑡 + 𝑎!(𝑡) − 𝑏! 𝑡 , 0

𝑄! 𝑡

𝑤! 𝑡

𝛼!(𝑡)



Lyapunov drift theorem
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The conditional expected Lyapunov drift:

Assume that the difference between arrivals and service 
satisfies the following property for some real 𝜀 > 0

Theorem (Lyapunov Drift):

The condition holds 
for all 𝑡 and all 𝑄!



Lyapunov drift-plus-penalty: minimize time 
averages with queue stability  
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The drift-plus-penalty function:

Penalty function, 
e.g., energy consumption

Control parameter, 
non-negative

Drift function

Theorem (Lyapunov Optimization):

The condition holds 
for all 𝑡 and all 𝑄!

𝑝∗: the desired target for the time average of 𝑝(𝑡)

(1)

E[(1)]



Lyapunov Optimization Algorithm
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minimize: 𝐸[𝑒(𝑡)]

subject to: lim
(→&

- . (
(

= 0

𝑎(𝑡) 𝑏(𝑡)

𝑄 𝑡 + 1 = max 𝑄 𝑡 + 𝑎(𝑡) − 𝑏 𝑡 , 0

𝑄 𝑡

𝑤 𝑡

𝛼(𝑡)

Energy consumption∶ 𝑒 𝑡 = 𝑓0(𝑏 𝑡 , 𝑤 𝑡 )

𝐿 𝑡 = '
1
𝑄1 𝑡

Δ𝐿 𝑡 + 𝑉𝑒 𝑡 ≤ 𝐵 + 𝑄 𝑡 𝑎 𝑡 − 𝑏 𝑡 + 𝑉𝑒(𝑡)

Δ𝐿 𝑡 = 𝐿 𝑡 + 1 − 𝐿 𝑡

𝑄1(𝑡 + 1) ≤ 𝑄1 𝑡 + 2𝑄 𝑡 𝑎 𝑡 − 𝑏 𝑡 + 𝑎 𝑡 − 𝑏 𝑡 1

§ Make control actions 𝛼(𝑡) that greedily minimize 
the bound of the drift-plus-penalty function,
Δ𝐿 𝑡 + 𝑉𝑒 𝑡 , in each slot 𝑡.

§ Advantage: does not require knowledge of the 
probabilities of the random network events 
(e.g., task arrivals and channel condition)

Assuming that 𝑎 𝑡 and 𝑏 𝑡 are bounded,



From Physical Queues to Virtual Queues
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R𝑦2(t) : the time average expectation of 𝑦2(𝑡) over the first 
𝑡 slots under a particular control strategy

Define the time average expectation 𝑒̅2(𝑡) similarly.

How to deal with constraints (1) and (2)?

Define virtual queues 𝑍2(𝑡) and 𝐻3(𝑡) with 
update equations as 

By some mathematical transformations, we obtain

Thus, if 𝒁𝒍(𝒕) and 𝑯𝒋(𝒕) are mean-rate stable, i.e.,

lim
(→&

- 6" (
(

= 0 and lim
(→&

- 7# (
(

= 0,
constraints (1) and (2) are satisfied. 

General stochastic optimization problem:



Lyapunov-based Optimization in UAV-assisted MEC Networks
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System model: a time-evolving network, one UAV serves several mobile users

Objective: minimize system’s energy (users and the UAV)

Constraint: stability of users’ and the UAV’s queues

𝑎(𝑡)

𝑄 𝑡

𝑤 𝑡

𝛼(𝑡)

- user movement
- fading-effected 

wireless channel

stochastic task arrival
- How many tasks computed locally 
- How many tasks offloaded
- Bandwidth allocation for 

uplink (task offloading) and
downlink (output feedback)

Offload

Compute locally



Lyapunov-based Optimization in UAV-assisted MEC Networks
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Increasing V - (a) lengthen the task queues at both the user and the UAV
- (b) cause the UAV’s power consumption grow rapidly at first 

and declines gradually afterward
- (c) cause the user upload more tasks to the UAV and process 

fewer tasks locally -> afterward, process fewer tasks to 
further save power



Lyapunov-based Optimization in UAV-assisted 
MEC Networks
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EBA: Equal Bandwidth Allocation, omitting user 

movement + time-varying channel condition

JOPT: Joint Optimization for all variables

NOF: No Offloading 



Conclusion

• Lyapunov optimization: an online optimization approach 
for dynamic systems with time averages, including
• a time-average objective function (e.g., energy consumption),
• constraints on queue stability,
• and other constraints in the form of time average 

•Algorithm: greedily minimize the upper bound of the 
Lyapunov drift-plus-penalty function in each time slot

3/14/22 13



References

M. J. Neely, Stochastic Network Optimization with Application to 
Communication and Queueing Systems. Morgan & Claypool, 2010.

3/14/22 14



Thank you for listening


