2021 CCL Winter Camp

Lyapunov Optimization Framework

Linh Hoang

Ph.D. student at Computer Communications Lab

Inawashiro, March 14, 2022

Contents

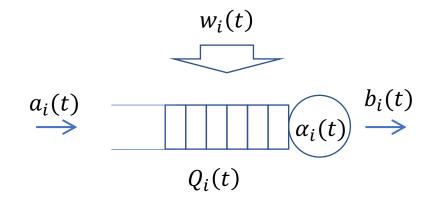
• Use case

• Time-average optimization subject to queue stability

Lyapunov Optimization for dynamic systems

- Lyapunov drift
- Lyapunov drift-plus-penalty
- From physical queues to virtual queues
- An application to UAV-assisted MEC systems
- Conclusion

Use case: Optimizing the time-average energy subject to queue stability



minimize:

subject to:

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} E[e_i(t)]$$
$$\lim_{t \to \infty} \frac{E[Q_i(t)]}{t} = 0$$

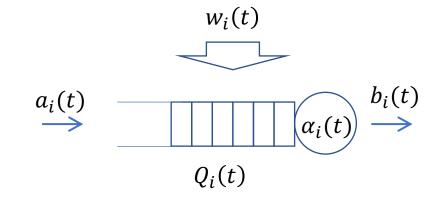
Queues are mean-rate stable

Time-average energy

 $Q_i(t+1) = \max\{Q_i(t) + a_i(t) - b_i(t), 0\}$

- $w_i(t)$: environmental variable at time t (i.i.d over slots)
- $\alpha_i(t)$: control action at time t, determined based on $Q_i(t)$, $a_i(t)$, and $w_i(t)$
- $e_i(t)$: energy cost for action $\alpha_i(t)$, deterministic as $e_i(t) = f_e(\alpha_i(t), w_i(t))$
- $b_i(t)$: output of action $\alpha_i(t)$, deterministic as $b(t) = f_b(\alpha_i(t))$

Use case: Optimizing the time-average energy subject to queue stability



$$Q_i(t+1) = \max\{Q_i(t) + a_i(t) - b_i(t), 0\}$$

minimize:

subject to:

 $E[e_i(t)]$ $\lim_{t \to \infty} \frac{E[Q_i(t)]}{t} = 0$

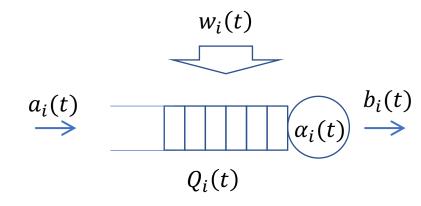
Greedy approach:

- Try to process $a_i(t)$ as much as possible in each time slot to achieve queue stability
 - -> may **not energy-efficient**
 - -> Any alternative?
- Alternatively, limit b_i(t) in each time slot to minimize the energy consumption
 -> then, how to control queue stability?

• Classical optimization:

- Complete information is assumed, i.e., $a_i(t) \& w_i(t), t = 0,1,2, \dots$ are all available at the beginning,
- Optimal solution could be obtained
- But, how do we know the future for real-time control?
- Online optimization is indeed needed

Lyapunov drift: An approach for dealing with queue stability for dynamic systems



 $Q_i(t+1) = \max\{Q_i(t) + a_i(t) - b_i(t), 0\}$

Define the vector of queue backlogs at time t by

 $Q(t) = (Q_1(t), \ldots, Q_N(t))$

(Suppose there are N queues in the network)

For each slot, define: $L(t) = rac{1}{2} \sum_{i=1}^N Q_i(t)^2$

The Lyapunov drift: $\Delta L(t) = L(t+1) - L(t)$

$$egin{aligned} \Delta L(t) \leqslant B(t) + \sum_{i=1}^N Q_i(t)(a_i(t) - b_i(t)) \ B(t) &= rac{1}{2} \sum_{i=1}^N \left(a_i(t) - b_i(t)
ight)^2 \end{aligned}$$

Suppose the second moments of arrivals and service in each queue are bounded:

 $\mathbb{E}[B(t)|Q(t)]\leqslant B$

5

Lyapunov drift theorem

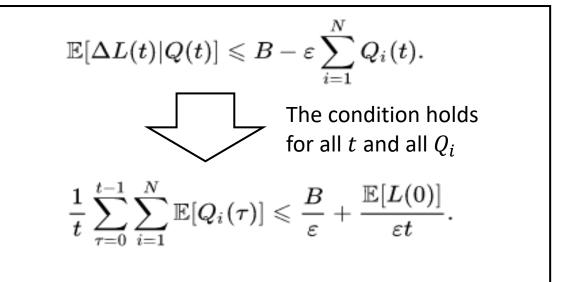
The conditional expected Lyapunov drift:

 $\mathbb{E}[\Delta L(t)|Q(t)] \leqslant B + \sum_{i=1}^N Q_i(t)\mathbb{E}[a_i(t) - b_i(t)|Q(t)]$

Assume that the difference between arrivals and service satisfies the following property for some real $\varepsilon > 0$

 $\mathbb{E}[a_i(t) - b_i(t)|Q(t)] \leqslant -\varepsilon$

Theorem (Lyapunov Drift):



Lyapunov drift-plus-penalty: minimize time averages with queue stability

The drift-plus-penalty function:

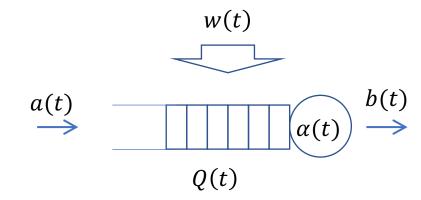
$$\Delta L(t) + V p(t)$$
(1)
Drift function Penalty function,
e.g., energy consumption
Control parameter,
non-negative

 $\mathsf{E}[(1)] \leqslant B + \sum_{i=1}^{N} Q_i(t) \mathbb{E}[a_i(t) - b_i(t)|Q(t)] + Vp(t)$

Theorem (Lyapunov Optimization):

 p^* : the desired target for the time average of p(t) $p(t) \geqslant p_{\min} \quad orall t \in \{0, 1, 2, \dots\}$ 7

Lyapunov Optimization Algorithm



$$Q(t+1) = \max\{Q(t) + a(t) - b(t), 0\}$$

Energy consumption: $e(t) = f_e(b(t), w(t))$

minimize:E[e(t)]subject to: $\lim_{t \to \infty} \frac{E[Q(t)]}{t} = 0$

 $L(t) = \frac{1}{2}Q^{2}(t)$ $Q^{2}(t+1) \le Q^{2}(t) + 2Q(t)(a(t) - b(t)) + (a(t) - b(t))^{2}$

 $\Delta L(t) = L(t+1) - L(t)$

Assuming that a(t) and b(t) are bounded,

$$\Delta L(t) + Ve(t) \le B + Q(t)(a(t) - b(t)) + Ve(t)$$

- Make control actions $\alpha(t)$ that **greedily** minimize the bound of the drift-plus-penalty function, $\Delta L(t) + Ve(t)$, in each slot t.
- Advantage: does not require knowledge of the probabilities of the random network events (e.g., task arrivals and channel condition)

From Physical Queues to Virtual Queues

General stochastic optimization problem:

 $\bar{y}_l(t)$: the time average expectation of $y_l(t)$ over the first t slots under a particular control strategy

$$\overline{y}_l(t) \stackrel{\Delta}{=} \frac{1}{t} \sum_{\tau=0}^{t-1} \mathbb{E} \{ y_l(\tau) \}$$

Define the time average expectation $\bar{e}_l(t)$ similarly.

How to deal with constraints (1) and (2)?

Define **virtual queues** $Z_l(t)$ and $H_j(t)$ with update equations as

 $Z_l(t+1) = \max[Z_l(t) + y_l(t), 0]$ $H_j(t+1) = H_j(t) + e_j(t)$

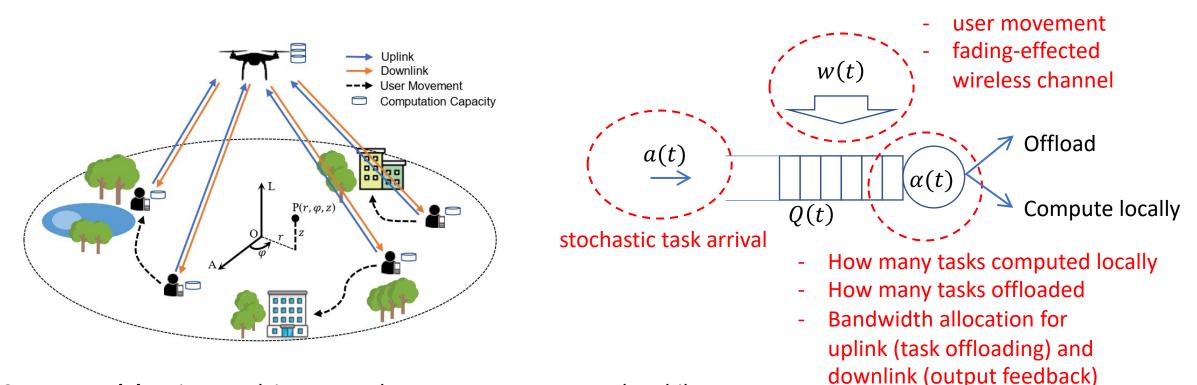
By some mathematical transformations, we obtain

$$\limsup_{t \to \infty} \frac{\mathbb{E}\left\{Z_l(t)\right\}}{t} \ge \limsup_{t \to \infty} \overline{y}_l(t)$$
$$\frac{\mathbb{E}\left\{H_j(t)\right\} - \mathbb{E}\left\{H_j(0)\right\}}{t} = \overline{e}_j(t)$$

Thus, if $Z_l(t)$ and $H_j(t)$ are mean-rate stable, i.e.,

 $\lim_{t \to \infty} \frac{E[Z_l(t)]}{t} = 0 \text{ and } \lim_{t \to \infty} \frac{E[H_j(t)]}{t} = 0,$ constraints (1) and (2) are satisfied.

Lyapunov-based Optimization in UAV-assisted MEC Networks



System model: a time-evolving network, one UAV serves several mobile users

Objective: minimize system's energy (users and the UAV)

Constraint: stability of users' and the UAV's queues

Lyapunov-based Optimization in UAV-assisted MEC Networks

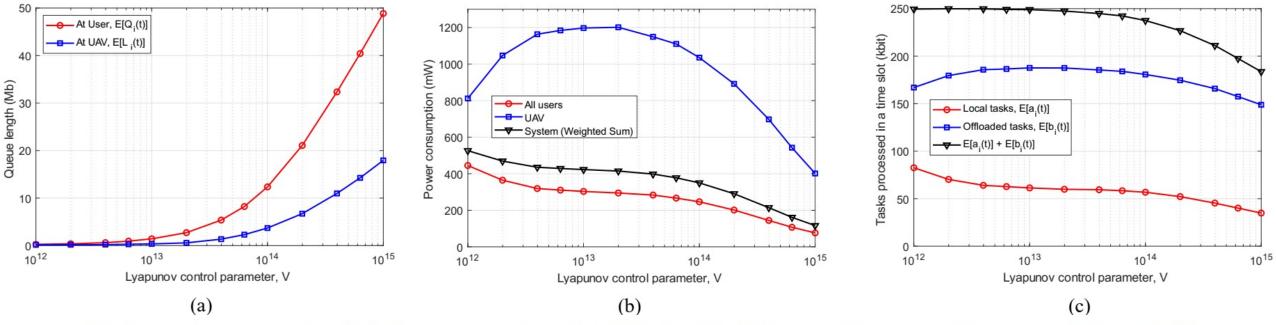
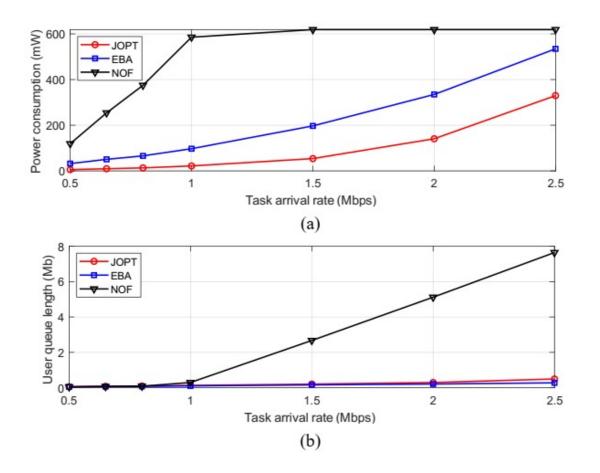


Fig. 3. (a) Average queue length, (b) Power consumption, and (c) Task flow of mobile users with response to the parameter V, $\lambda = 2.5$ Mbps

$$\min_{\mathbf{X}(t)} \quad \hat{\mathcal{D}}_{i}(t) + \underbrace{V}_{V} \left(\psi_{1} \sum_{i \in \mathsf{N}} E_{i}(t) + \psi_{2} E_{\mathsf{UAV}}(t) \right) \quad -$$

- (a) lengthen the task queues at both the user and the UAV
 (b) cause the UAV's power consumption grow rapidly at first and declines gradually afterward
- (c) cause the user upload more tasks to the UAV and process fewer tasks locally -> afterward, process fewer tasks to further save power

Lyapunov-based Optimization in UAV-assisted MEC Networks



EBA: Equal Bandwidth Allocation, omitting user
movement + time-varying channel condition
JOPT: Joint Optimization for all variables
NOF: No Offloading

Conclusion

- Lyapunov optimization: an online optimization approach for dynamic systems with time averages, including
 - a time-average objective function (e.g., energy consumption),
 - constraints on queue stability,
 - and other constraints in the form of time average
- Algorithm: **greedily** minimize the upper bound of the Lyapunov drift-plus-penalty function in each time slot

M. J. Neely, *Stochastic Network Optimization with Application to Communication and Queueing Systems*. Morgan & Claypool, 2010.

Thank you for listening