2021 CCL Winter Camp

Lyapunov Optimization Framework

Linh Hoang

Ph.D. student at Computer Communications Lab

Inawashiro, March 14, 2022



Contents

* Use case
* Time-average optimization subject to queue stability

* Lyapunov Optimization for dynamic systems
* Lyapunov drift
e Lyapunov drift-plus-penalty
* From physical queues to virtual queues

* An application to UAV-assisted MEC systems
* Conclusion



Use case: Optimizing the time-average energy

subject to queue stability

w; (t)
< >
a;(t) b;(t)
— a;(t)) —>
minimize:
Qi(t)
subject to:

Q;(t + 1) = max{Q;(t) + a;(t) — b;(¢),0}

w;(t):  environmental variable at time t (i.i.d over slots)
a;(t):  control action at time ¢,
determined based on Q;(t), a;(t), and w;(t)
e;(t): energy cost for action a;(t),
deterministic as e;(t) = f,(a;(t), w;(t))
b;(t):  output of action a;(t),
deterministic as b(t) = f; (a;(t))
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Use case: Optimizing the time-average energy
subject to queue stability

w; (t) e Greedy approach:

— * Try to process a;(t) as much as possible in each
time slot to achieve queue stability

a;(t) b(t) -> may not energy-efficient
—> a;(t)) —=> -> Any alternative?
* Alternatively, limit b;(t) in each time slot to minimize
Q:(t) the energy consumption

-> then, how to control queue stability?
i t+1) = i t) + i t) — b;(t ,0 . e . .
Qe +1) = maxtQi(t) + ai(t) = bilt), 03 * Classical optimization:

minimize: E[e;(t)] * Complete inforTation is assumed, i.e., o
a;(t) & w;(t), t = 0,1,2, ... are all available at the beginning,
subject to: lim ELi® _ e Optimal solution could be obtained |
tooo 1 e But, how do we know the future for real-time control?

* Online optimization is indeed needed



Lyapunov drift: An approach for dealing with
queue stability for dynamic systems

Define the vector of queue backlogs at time t by

w; (t) Q(t) = (Qi(t),...,Qn(t))
() by () (Suppose there are N queues in th: network)
—> a;(t)) —= For each slot, define: L(t) = % Z Qi(t)*
Qi (t) -

ift: AL(t)=L(t+1)— L(t
0:(t + 1) = max{Q;(t) + a;(t) — b;(¢), 0} The Lyapunov drift (1) (t+1) ()

N
AL(t) < B(t) + Z Qi(t)(ai(t) — bi(t))

N

B(t) = 5 Y (@ (t) ~ bi(t))°

1=1
Suppose the second moments of arrivals and service
in each queue are bounded:

3/14/22 E[B(t)|Q(t)] < B °



Lyapunov drift theorem

The conditional expected Lyapunov drift:

EIAL®1)IQ() < B+ Y Qi())Blai(t) — bi(2)|Q(®)

Assume that the difference between arrivals and service
satisfies the following property for some real e > 0

Ela;(t) — b: (1) Q(t)] < —e
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Theorem (Lyapunov Drift):

N
E[AL()|Q(t)] < B—¢ > Qi(t).
i—1

The condition holds

~_ —_ foralltandall Q;

188 & B  E[L(0)]

?ZZE[Qi(THQ?WL et

=0 =1




Lyapunov drift-plus-penalty: minimize time
averages with queue stability

The drift-plus-penalty function:

AL(t) le(t) (1)
|

Penalty function,

Drift function

Control parameter,
non-negative

E[(1)] < B+ Z Q:(t)Ela (t) — b: (1) Q(t)] + Vp(t)
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Theorem (Lyapunov Optimization):

e.g., energy consumption

N
E[AL(t) + VP(H)Q®)] < B+ Vp' —e ) _Qi(t)

The condition holds

~ Z for all t and all Q;

1 B E[L(0)]

AN ) <pt 4+ =
t;[p(‘r)]\p + 7+

t-1 N . . -
lZZE[Qi(T)] ¢ BHVE —puin) | ELO)

t =0 i1=1 £ et

p*: the desired target for the time average of p(t)
p(t) 2 Pmin Vi € {O, 1, 2, . n } 7




Lyapunov Optimization Algorithm

w(t) L(t) = Q2(t)
- =
Q2(t + 1) < Q2(t) + 20(t) (a(t) — b(t)) + (a(®) — b(D))"
a(t) b(t)
— a®)) —= AL(E) = L(¢ + 1) — L(¢)
Q)

Assuming that a(t) and b(t) are bounded,

Q(t +1) = max{Q(t) + a(t) — b(t), 0} AL(t) + Ve(t) < B +HQ ) (a(t) — b(D)) + Ve(t)

Energy consumption: e(t) = f.(b(t), w(t))
= Make control actions a(t) that greedily minimize

minimize: Ele(t)] the bound of the drift-plus-penalty function,
AL(t) + Ve(t), in each slot t.

= Advantage: does not require knowledge of the
probabilities of the random network events
(e.g., task arrivals and channel condition)

i E1R@T _

t—oo

subject to:



From Physical Queues to Virtual Queues

General stochastic optimization problem:

Minimize: lim sup y,(7)
§—>00
Subject to: 1) limsupy;(t) <0 VI e{l,..., 2]
2) lme;ij¢)=0Vjell,...,J]

OC

3) Qj'eues Qi (t) are mean rate stable Vk € {1, ..., K}
4) aft) € Ayu) Vt

y;(t) : the time average expectation of y;(t) over the first
t slots under a particular control strategy

r—1

1
n0== ) E{n(@)

=0

Define the time average expectation ¢;(t) similarly.
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How to deal with constraints (1) and (2)?

Define virtual queues Z;(t) and H;(t) with
update equations as

Z(t+1) = max[Z;(t) + yi(t), 0]
Hit+1) = H;(t)+ejt)

By some mathematical transformations, we obtain

E{Zt
lim sup \Zi®)} > lim sup y,;(7)

t— 00 t t— 00

E{H;(t)} —E{H;©0))}
t

Thus, if Z;(t) and H;(t) are mean-rate stable, i.e.,
E[Zy()] E[H;®] _

lim ————= = 0and lim
constraints (1) and (2) are satisfied.

=e;(t)

t>oo t t>oo



Lyapunov-based Optimization in UAV-assisted MEC Networks

- user movement

—
- ~ ~

‘W—g — Uplink Re "~ - fading-effected
—> D link / .
—— User Movement | w(t) )\ wireless channel

=3 Computation Capacity \ /
P - =~ ~ \ < //

s S -, -
__________ / \ N _—_— - ~ S
—_ lI a(t) \I I// N Offload
| \ —> o la () )N
\\\ \\ // \ !
ke N TSN S - - o) 7 Compute locally
4 . . S
,‘ stochastic task arrival ~---7
&= -  How many tasks computed locally

- How many tasks offloaded

- Bandwidth allocation for
uplink (task offloading) and
downlink (output feedback)

-
s

System model: a time-evolving network, one UAV serves several mobile users
Objective: minimize system’s energy (users and the UAV)

Constraint: stability of users’ and the UAV’s queues
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Lyapunov-based Optimization in UAV-assisted MEC Networks

50

b v v —T T T T T 250 v v v v V -3; .
—oe— At User, E[Q;(1)] 1200
—a— AtUAV, ELL (1) g
40 e = 200 1
= 1000 o B/E/Q—Q—B—b——o_q___s_\s\s\s\:
E w
=S £
30+ o 800 —©— All users = 150 1 [_g— Local tasks, E[a.(t)]
8 —8— UAV © ;
= ¥— System (Weighted Sum) £ —pg— Offloaded tasks, E[bi(t)]
@ 600 3 Efa.(t)] + E[b.(t
5 = e 2100k =7 [a,(t)] + E[b,(t)] i
o w
— ¢ 8 q
2 400 o
o Q
10 o 8 50} ’
200 §
0 0 : : : ' : ‘
102 103 10" 1015 1012 1013 104 105 102 103 10 10"
Lyapunov control parameter, V Lyapunov control parameter, V Lyapunov control parameter, V
(a) (b) (c)

Fig. 3. (a) Average queue length, (b) Power consumption, and (c) Task flow of mobile users with response to the parameter V', A = 2.5 Mbps

Increasing V - (a) lengthen the task queues at both the user and the UAV
e - (b) cause the UAV’s power consumption grow rapidly at first

; . " and declines gradually afterward
min D;(t Vv E;(t) + 1Yo B t —
X (t) (®) ﬂ\\ ) Y1 ZEZN () + Y2 Euav(?) - (c) cause the user upload more tasks to the UAV and process
! fewer tasks locally -> afterward, process fewer tasks to

further save power
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'vapunov-based Optimization in UAV-assisted
MEC Networks

)
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E EBA: Equal Bandwidth Allocation, omitting user
~§ 400
£ movement + time-varying channel condition
§200 . .. . .
5 JOPT: Joint Optimization for all variables
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a o 1 .
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Conclusion

* Lyapunov optimization: an online optimization approach
for dynamic systems with time averages, including
* a time-average objective function (e.g., energy consumption),
e constraints on queue stability,
* and other constraints in the form of time average

* Algorithm: greedily minimize the upper bound of the
Lyapunov drift-plus-penalty function in each time slot
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