Entangled Systems and Application in QKD

Vu Quang Minh
Computer Communications Laboratory, The University of Aizu

Contents

- Wave function and superposition
- Single Quantum Bit (Qubit) System
- Two Qubit System
- Non-entangled System
- Entangled System
- BBM92 Protocol

Wave function \& Superposition

Classical Mechanics	Quantum Mechanics
It deals with macroscopic objects	It deals microscopic (very small) particles
Electrons, photons	

\rightarrow The wavefunction $(|\psi\rangle)$ is used to describe the states of particles in quantum mechanics
Example of superposition in quantum mechanics (via Schrodinger's cat experiment):

Poison: 50\% effective, 50% ineffective

$$
\left.\left.\left.|\psi\rangle=\frac{1}{\sqrt{2}} \right\rvert\, \text { alive }\right\rangle \left.+\frac{1}{\sqrt{2}} \right\rvert\, \text { dead }\right\rangle
$$

$$
|\psi\rangle=\mid \text { dead }\rangle
$$

Single Quantum Bit (Qubit) System

- This is a system with two basis state $|0\rangle$ and $|1\rangle$
- Example: Electron spin, polarization of a photon
- The wave function for a single qubit system is the superposition of state $|0\rangle$ and $|1\rangle$

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

where α, β are real number, $\alpha^{2}+\beta^{2}=1$

- We can not get the information of the qubit in the system until we measure it

Premeasured wave function	Measurement outcome	Probability of outcome	Post-measured wave function
$\|\psi\rangle=\alpha\|0\rangle+\beta\|1\rangle$	0	α^{2}	$\|0\rangle$
	1	β^{2}	$\|1\rangle$
$\|\psi\rangle=\frac{1}{2}\|0\rangle+\frac{\sqrt{3}}{2}\|1\rangle$	0	$\left(\frac{1}{2}\right)^{2}=25 \%$	$\|0\rangle$
	1	$\left(\frac{\sqrt{3}}{2}\right)^{2}=75 \%$	$\|1\rangle$

Two Qubit System

- We consider a system of two qubits

- The wave function of the system is the superposition of four states $\left|0_{A} 0_{B}\right\rangle,\left|0_{A} 1_{B}\right\rangle,\left|1_{A} 0_{B}\right\rangle,\left|1_{A} 1_{B}\right\rangle$

$$
|\psi\rangle=\alpha\left|0_{A} 0_{B}\right\rangle+\beta\left|0_{A} 1_{B}\right\rangle+\gamma\left|1_{A} 0_{B}\right\rangle+\delta\left|1_{A} 1_{B}\right\rangle
$$

where $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=1$
Post-measured wave function
The probability of outcome: α^{2} $\longrightarrow\left|0_{A} 0_{B}\right\rangle$

Non-entangled (Separable) System

- Consider a two qubit system
- The wave function of the system

$$
|\psi\rangle=\alpha\left|0_{A} 0_{B}\right\rangle+\beta\left|0_{A} 1_{B}\right\rangle+\gamma\left|1_{A} 0_{B}\right\rangle+\delta\left|1_{A} 1_{B}\right\rangle\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=1\right)
$$

- This system is non-entangled if the wave function of this system can be written as the product of two wave functions of two independent quantum system

$$
\begin{aligned}
|\psi\rangle=\alpha\left|0_{A} 0_{B}\right\rangle+\beta\left|0_{A} 1_{B}\right\rangle+\gamma\left|1_{A} 0_{B}\right\rangle+\delta\left|1_{A} 1_{B}\right\rangle & =\underbrace{\left(a\left|0_{A}\right\rangle+b\left|1_{A}\right\rangle\right)}_{\text {System A }} \underbrace{\left(c\left|0_{B}\right\rangle+d\left|1_{B}\right\rangle\right)}_{\text {System B }} \\
& =\operatorname{ac|0_{A}0_{B}\rangle +\operatorname {ad}|0_{A}1_{B}\rangle +\mathrm {bc}|1_{A}0_{B}\rangle +\mathrm {bd}|1_{A}1_{B}\rangle }
\end{aligned}
$$

where $\mathrm{a}^{2}+\mathrm{b}^{2}=1, \mathrm{c}^{2}+\mathrm{d}^{2}=1$
In other words, we can find 4 number a, b, c, d so that

$$
\begin{aligned}
& \alpha=a c \\
& \beta=a d \\
& \gamma=b c \\
& \delta=b d
\end{aligned} \quad \begin{aligned}
& \text { and }
\end{aligned} \quad \begin{array}{r}
\mathrm{a}^{2}+\mathrm{b}^{2}=1, \mathrm{c}^{2}+\mathrm{d}^{2}=1 \\
\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)=1
\end{array}
$$

Non-entangled (Separable) System (2)

- Property:

- Two qubits in the non-entangled system can be measured independently
- Before or after the first qubit is measured, the probability of the second qubit's measurement is unchanged
- Explain:

From the condition $\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)=1$ we have $a^{2}+b^{2}=\frac{1}{c^{2}+d^{2}}$
The wave function of the non-entangled system

$$
|\psi\rangle=\left(a\left|0_{A}\right\rangle+b\left|1_{A}\right\rangle\right)\left(c\left|0_{B}\right\rangle+d\left|1_{B}\right\rangle\right)=\operatorname{ac}\left|0_{A} 0_{B}\right\rangle+\operatorname{ad}\left|0_{A} 1_{B}\right\rangle+\mathrm{bc}\left|1_{A} 0_{B}\right\rangle+\mathrm{bd}\left|1_{A} 1_{B}\right\rangle
$$

- Before qubit A is measured
- The probability that we can measure $\left|0_{B}\right\rangle=a^{2} c^{2}+\mathrm{b}^{2} c^{2}=c^{2}\left(a^{2}+b^{2}\right)=\frac{c^{2}}{c^{2}+d^{2}}$
- After qubit A is measured (assume $\left|0_{A}\right\rangle$ is the result of the measurement)
- The wave function of the system is $|\psi\rangle_{\text {new }}=\frac{a c\left|0_{A} 0_{B}\right\rangle+{ }^{2 d}\left|0_{A}{ }^{1} B\right\rangle}{\sqrt{a^{2} c^{2}+a^{2} d^{2}}}$
- The probability that we can measure $\left|0_{B}\right\rangle=\left(\frac{a c}{\sqrt{a^{2} c^{2}+a^{2} d^{2}}}\right)^{2}=\frac{a^{2} c^{2}}{a^{2} c^{2}+a^{2} d^{2}}=\frac{c^{2}}{c^{2}+d^{2}}$

Entangled System

- The two qubit system is entangled if we cannot find 4 number a, b, c, d so that

$$
\begin{aligned}
& \alpha=a c \\
& \beta=a d \\
& \gamma=b c \quad \text { and } \\
& \delta=b d
\end{aligned} \quad \mathrm{a}^{2}+\mathrm{b}^{2}=1, \mathrm{c}^{2}+\mathrm{d}^{2}=1
$$

Or $|\psi\rangle=\alpha\left|0_{A} 0_{B}\right\rangle+\beta\left|0_{A} 1_{B}\right\rangle+\gamma\left|1_{A} 0_{B}\right\rangle+\delta\left|1_{A} 1_{B}\right\rangle \neq\left(a\left|0_{A}\right\rangle+b\left|1_{A}\right\rangle\right)\left(c\left|0_{B}\right\rangle+d\left|1_{B}\right\rangle\right)$ with all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$

- There are 4 special cases of entangled system (Bell states):

$$
\begin{aligned}
& \frac{\left|0_{A} 0_{B}\right\rangle+\left|1_{A} 1_{B}\right\rangle}{\sqrt{2}}\left(\alpha=\frac{1}{\sqrt{2}}, \beta=0, \gamma=0, \delta=\frac{1}{\sqrt{2}}\right) \\
& \frac{\left|0_{A} 0_{B}\right\rangle-\left|1_{A} 1_{B}\right\rangle}{\sqrt{2}}\left(\alpha=\frac{1}{\sqrt{2}}, \beta=0, \gamma=0, \delta=\frac{-1}{\sqrt{2}}\right) \\
& \frac{\left|0_{A} 1_{B}\right\rangle+\left|1_{A} 0_{B}\right\rangle}{\sqrt{2}}\left(\alpha=0, \beta=\frac{1}{\sqrt{2}}, \gamma=\frac{1}{\sqrt{2}}, \delta=0\right) \\
& \frac{\left|0_{A} 1_{B}\right\rangle-\left|1_{A} 0_{B}\right\rangle}{\sqrt{2}}\left(\alpha=0, \beta=\frac{1}{\sqrt{2}}, \gamma=\frac{-1}{\sqrt{2}}, \delta=0\right)
\end{aligned}
$$

Entangled System (2)

- Property:
- When we measure one qubit in the entangled system, the probability distribution of the other qubit is disclosed
- In the entangled system with Bell states, when we measure one qubit, we can determine the state of the other qubit with certainty
- Example:
- Consider an entangled system $|\psi\rangle=\frac{\left|0_{A} 1_{B}\right\rangle+\left|1_{A} 0_{B}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left|0_{A} 1_{B}\right\rangle+\frac{1}{\sqrt{2}}\left|1_{A} 0_{B}\right\rangle$
- When we measure the qubit A
- The state if $\left|0_{A}\right\rangle$ is measured

$$
|\psi\rangle_{\text {new }}=\left|0_{A} 1_{B}\right\rangle=\left|0_{A}\right\rangle\left|1_{B}\right\rangle
$$

\rightarrow The state of the qubit B is $\left|1_{B}\right\rangle$

- The state if $\left|1_{A}\right\rangle$ is measured

$$
|\psi\rangle_{\text {new }}=\left|1_{A} 0_{B}\right\rangle=\left|1_{A}\right\rangle\left|0_{B}\right\rangle
$$

\rightarrow The state of the qubit B is $\left|0_{B}\right\rangle$

BBM92 Protocol

Basic setting of the BBM92 protocol (Alice, Bob: legitimate parties, Charlie: entangled photon pair source)

BBM92 Protocol: Example

Charlie		Alice				Bob				Sifted key
Time	Entangled photon pairs state	Time	Basis	Measured state	Bit	Time	Basis	Measured state	Bit (inverted)	
t_{0}	$1 / \sqrt{2}(\|01\rangle+\|10\rangle)$	t_{0}	\oplus	0°	0	t_{0}	\oplus	90°	0	0
t_{1}	$1 / \sqrt{2}(\|01\rangle+\|10\rangle)$	t_{1}	\oplus	0°	-	t_{1}	\otimes	45°	-	discarded
t_{2}	$1 / \sqrt{2}(\|01\rangle+\|10\rangle)$	t_{2}	\otimes	45°	1	t_{2}	\otimes	-45°	1	1
t_{3}	$1 / \sqrt{2}(\|01\rangle+\|10\rangle)$	t_{3}	\otimes	-45°	-	t_{3}	\oplus	90°	-	discarded

Thank you for your listening

BBM92 Protocol with Dual-threshold/Direct Detection

- We propose a new design concept for satellite CV-QKD for the entanglement-based scheme based on the BBM92 protocol with DT/DD receiver
- Motivation: To achieve QKD function with simple configuration and overcome the challenging issue of CV-QKD

Example

Satellite (Charlie)				Alice				Bob			Sifted key
Time	Bit	Signal	Time	Threshold	Bit	Time	Threshold	Bit			
t_{0}	0	i_{0}	t_{0}	d_{0}^{A}	0	t_{0}	d_{0}^{B}	X	discarded		
t_{2}	1	i_{1}	t_{2}	d_{1}^{A}	X	t_{2}	d_{1}^{B}	X	discarded		
t_{3}	0	i_{0}	t_{3}	d_{0}^{A}	0	t_{3}	d_{0}^{B}	0	0		
t_{4}	1	i_{1}	t_{4}	d_{1}^{A}	1	t_{4}	d_{1}^{B}	1	1		
t_{5}	0	i_{0}	t_{5}	d_{0}^{A}	X	t_{5}	d_{0}^{B}	0	discarded		

BBM92 Protocol (2)

- Alice and Bob convert remaining results by assigning them for bit " 0 " and bit " 1 " to form sifted key as follows:

- The photon pairs are (anti-correlated) entangled, Bob needs to invert his detected bits so that he and Alice could get an identical bit string
- Step 4: Alice and Bob perform post-processing procedures including information reconciliation and privacy amplification over classical channel to correct transmission errors and produce the final secret key

