

Entangled Systems and Application in QKD

Vu Quang Minh

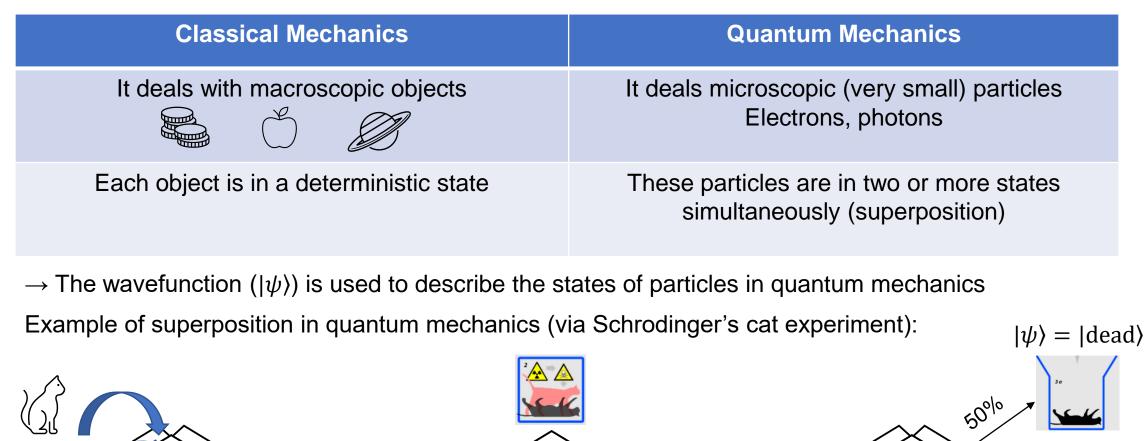
Computer Communications Laboratory, The University of Aizu

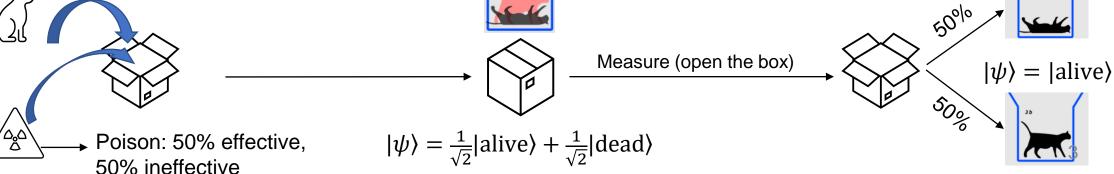
1

Contents

- Wave function and superposition
- Single Quantum Bit (Qubit) System
- Two Qubit System
- Non-entangled System
- Entangled System
- BBM92 Protocol

Wave function & Superposition





Single Quantum Bit (Qubit) System

- This is a system with two basis state $|0\rangle$ and $|1\rangle$
- Example: Electron spin, polarization of a photon
- The wave function for a single qubit system is the superposition of state $|0\rangle$ and $|1\rangle$

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

where α , β are real number, $\alpha^2 + \beta^2 = 1$

• We can not get the information of the qubit in the system until we measure it

Premeasured wave function	Measurement outcome	Probability of outcome	Post-measured wave function
$ u_{1}\rangle = \alpha 0\rangle + \beta 1\rangle$	0	α^2	0>
$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$	1	β^2	1>
$ \psi\rangle = \frac{1}{2} 0\rangle + \frac{\sqrt{3}}{2} 1\rangle$	0	$\left(\frac{1}{2}\right)^2 = 25\%$	0>
	1	$\left(\frac{\sqrt{3}}{2}\right)^2 = 75\%$	1>

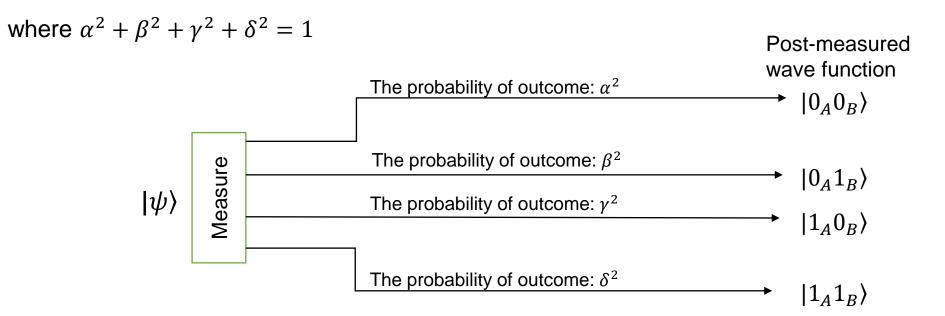
Two Qubit System

• We consider a system of two qubits



• The wave function of the system is the superposition of four states $|0_A 0_B\rangle$, $|0_A 1_B\rangle$, $|1_A 0_B\rangle$, $|1_A 1_B\rangle$

$$|\psi\rangle = \alpha |0_A 0_B\rangle + \beta |0_A 1_B\rangle + \gamma |1_A 0_B\rangle + \delta |1_A 1_B\rangle$$



Non-entangled (Separable) System

- Consider a two qubit system
- The wave function of the system

$$|\psi\rangle = \alpha |0_A 0_B\rangle + \beta |0_A 1_B\rangle + \gamma |1_A 0_B\rangle + \delta |1_A 1_B\rangle (\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1)$$

• This system is *non-entangled* if the wave function of this system can be written as the product of two wave functions of two independent quantum system

$$\begin{split} \psi \rangle &= \alpha |0_A 0_B\rangle + \beta |0_A 1_B\rangle + \gamma |1_A 0_B\rangle + \delta |1_A 1_B\rangle = \underbrace{(a|0_A\rangle + b|1_A\rangle)(c|0_B\rangle + d|1_B\rangle)}_{\text{System A}} \end{split}$$

where $a^2 + b^2 = 1$, $c^2 + d^2 = 1$

In other words, we can find 4 number a, b, c, d so that

$$\alpha = ac$$

$$\beta = ad$$

$$\gamma = bc$$

$$\delta = bd$$

$$\alpha^{2} + b^{2} = 1, c^{2} + d^{2} = 1$$

$$(a^{2} + b^{2})(c^{2} + d^{2}) = 1$$

Non-entangled (Separable) System (2)

- Property:
 - Two qubits in the non-entangled system can be measured independently
 - Before or after the first qubit is measured, the probability of the second qubit's measurement is unchanged
 - Explain:

From the condition $(a^2 + b^2)(c^2 + d^2) = 1$ we have $a^2 + b^2 = \frac{1}{c^2 + d^2}$

The wave function of the non-entangled system

 $|\psi\rangle = (a|0_A\rangle + b|1_A\rangle)(c|0_B\rangle + d|1_B\rangle) = ac|0_A0_B\rangle + ad|0_A1_B\rangle + bc|1_A0_B\rangle + bd|1_A1_B\rangle$

- o Before qubit A is measured
 - The probability that we can measure $|0_B\rangle = a^2c^2 + b^2c^2 = c^2(a^2 + b^2) = \frac{c^2}{c^2 + d^2}$
- After qubit A is measured (assume $|0_A\rangle$ is the result of the measurement)
 - The wave function of the system is $|\psi\rangle_{new} = \frac{\mathrm{ac}|\mathbf{0}_A\mathbf{0}_B\rangle + \mathrm{ad}|\mathbf{0}_A\mathbf{1}_B\rangle}{\sqrt{a^2c^2 + a^2d^2}}$

• The probability that we can measure
$$|0_B\rangle = \left(\frac{ac}{\sqrt{a^2c^2+a^2d^2}}\right)^2 = \frac{a^2c^2}{a^2c^2+a^2d^2} = \frac{c^2}{c^2+d^2}$$

Entangled System

• The two qubit system is *entangled* if we cannot find 4 number a, b, c, d so that

$$\begin{array}{l} \alpha = ac \\ \beta = ad \\ \gamma = bc \\ \delta = bd \end{array} \quad \text{and} \quad \begin{array}{l} a^2 + b^2 = 1, c^2 + d^2 = 1 \\ (a^2 + b^2)(c^2 + d^2) = 1 \end{array}$$

Or $|\psi\rangle = \alpha |0_A 0_B\rangle + \beta |0_A 1_B\rangle + \gamma |1_A 0_B\rangle + \delta |1_A 1_B\rangle \neq (a|0_A\rangle + b|1_A\rangle)(c|0_B\rangle + d|1_B\rangle)$ with all a, b, c, d

• There are 4 special cases of entangled system (Bell states):

$$\frac{|0_A 0_B\rangle + |1_A 1_B\rangle}{\sqrt{2}} (\alpha = \frac{1}{\sqrt{2}}, \beta = 0, \gamma = 0, \delta = \frac{1}{\sqrt{2}})$$
$$\frac{|0_A 0_B\rangle - |1_A 1_B\rangle}{\sqrt{2}} (\alpha = \frac{1}{\sqrt{2}}, \beta = 0, \gamma = 0, \delta = \frac{-1}{\sqrt{2}})$$
$$\frac{|0_A 1_B\rangle + |1_A 0_B\rangle}{\sqrt{2}} (\alpha = 0, \beta = \frac{1}{\sqrt{2}}, \gamma = \frac{1}{\sqrt{2}}, \delta = 0)$$
$$\frac{|0_A 1_B\rangle - |1_A 0_B\rangle}{\sqrt{2}} (\alpha = 0, \beta = \frac{1}{\sqrt{2}}, \gamma = \frac{-1}{\sqrt{2}}, \delta = 0)$$

Entangled System (2)

- Property:
 - When we measure one qubit in the entangled system, the probability distribution of the other qubit is disclosed
 - In the entangled system with Bell states, when we measure one qubit, we can determine the state of the other qubit with certainty
- Example:
 - Consider an entangled system $|\psi\rangle = \frac{|0_A 1_B\rangle + |1_A 0_B\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} |0_A 1_B\rangle + \frac{1}{\sqrt{2}} |1_A 0_B\rangle$
 - When we measure the qubit A
 - The state if $|0_A\rangle$ is measured

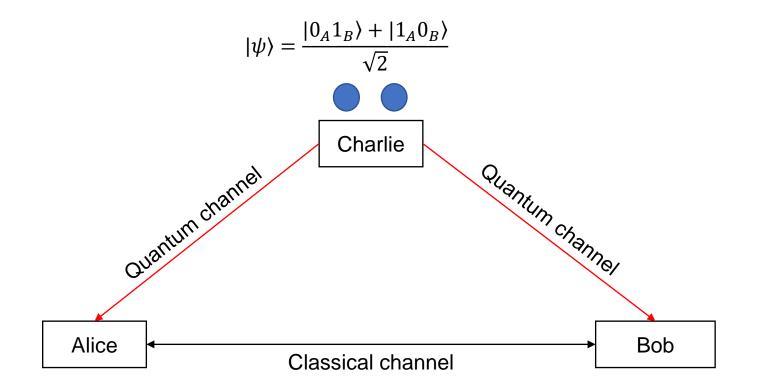
$$\langle \psi \rangle_{new} = |0_A 1_B \rangle = |0_A \rangle |1_B \rangle$$

- \rightarrow The state of the qubit B is $|1_B\rangle$
- The state if $|1_A\rangle$ is measured

$$\psi\rangle_{new} = |1_A 0_B\rangle = |1_A\rangle|0_B\rangle$$

 \rightarrow The state of the qubit B is $|0_B\rangle$

BBM92 Protocol



Basic setting of the BBM92 protocol (Alice, Bob: legitimate parties, Charlie: entangled photon pair source)

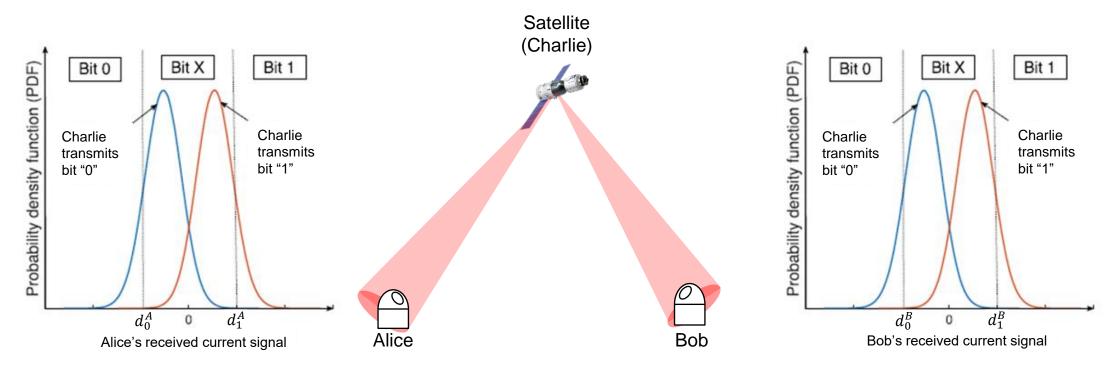
BBM92 Protocol: Example

	Charlie	Alice			Bob				Sifted key	
Time	Entangled photon	Time	Basis	Measured	Bit	Time	Basis	Measured	Bit	Shied Key
Time	pairs state	Time	Dasis	state	Dit	Time	Dasis	state	(inverted)	
t_0	$1/\sqrt{2}(01\rangle + 10\rangle)$	t_0	\oplus	0°	0	t_0	\oplus	90°	0	0
t_1	$1/\sqrt{2}(01\rangle + 10\rangle)$	t_1	\oplus	0°	_	t_1	\otimes	45°		discarded
t_2	$1/\sqrt{2}(01\rangle + 10\rangle)$	t_2	\otimes	45°	1	t_2	\otimes	-45°	1	1
t_3	$1/\sqrt{2}(01\rangle + 10\rangle)$	t_3	\otimes	-45°	-	t_3	\oplus	90°		discarded

Thank you for your listening

BBM92 Protocol with Dual-threshold/Direct Detection

- We propose a new design concept for satellite CV-QKD for the entanglement-based scheme based on the BBM92 protocol with DT/DD receiver
- Motivation: To achieve QKD function with simple configuration and overcome the challenging issue of CV-QKD



Example

Satel	lite (Cl	harlie)		Alice	Bob				Sifted key
Time	Bit	Signal	Time	Threshold	Bit	Time	Threshold	Bit	Shied Key
t_0	0	i_0	t_0	d_0^A	0	t_0	d_0^B	X	discarded
t_2	1	i_1	t_2	d_1^A	Х	t_2	d_1^B	X	discarded
t_3	0	i_0	t_3	d_0^A	0	t_3	d_0^B	0	0
t_4	1	i_1	t_4	d_1^A	1	t_4	d_1^B	1	1
t_5	0	i_0	t_5	d_0^A	Х	t_5	d_0^B	0	discarded

BBM92 Protocol (2)

 Alice and Bob convert remaining results by assigning them for bit "0" and bit "1" to form *sifted key* as follows:

Bit 0	Bit 1
← (0°)	🄶 (90°)
1 (-45°)	(45°)

- The photon pairs are (anti-correlated) entangled, Bob needs to invert his detected bits so that he and Alice could get an identical bit string
- **Step 4:** Alice and Bob perform post-processing procedures including *information reconciliation* and *privacy amplification* over classical channel to correct transmission errors and produce the *final secret key*