LDPC-based HARQ for Optical Satellite-Assisted Internet of Vehicles

NGUYEN Trong Cuong

Computer Communication Lab., The University of Aizu, Japan

March 9, 2023

Cuong Nguyen (CO	CL, U	oA)
------------------	-------	-----

Outline

I. Low-density Parity Check Codes

II. Rate-compatible LDPC Codes

III. Optical Satellite-Assisted Internet of Vehicles

IV. My Proposal

Cuong Nguyen	(CCL, UoA)
--------------	------------

э

2/23

Low-density Parity-check Codes

- Low-density parity-check (LDPC) codes are linear block codes with a **sparse parity check matrix**
 - A matrix is said to be sparse if more than half of its elements are zero
 - Parity check matrix can be graphically presented by a Tanner graph

History of LDPC codes

- LDPC codes were first introduced by Gallager in 1962
- However, they were forgotten for a long time until MacKay rediscovered them in 1995
- Applications: 5G New Radio (NR), WiMAX (IEEE 802.16), Wifi 6 (IEEE 802.11ax)

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

$$c_1 \quad c_2 \quad c_3 \quad c_4 \quad c_5 \quad c_6$$
Check nodes
Check nodes
Check nodes

 Z_1

 Z_2

 Z_{2}

< ロ > < 同 > < 回 > < 回 > < 回 > <

March 9, 2023

3/23

Iterative Decoding Algorithms

Iterative decoding algorithms are decoding algorithms for linear block codes

- The basic idea of iterative decoding algorithms is the *information update* between VNs and CNs
- The erroneous bits are then gradually corrected

Thanks to the spareness of the parity check matrix, the LDPC codes can be decoded with linear-time complexity by iterative decoding algorithms

LDPC codes can implement long codewords with practical decoding time

Decoding Threshold

The performance of an LDPC code can be evaluated by the decoding threshold

- Decoding threshold is the minimum value of SNR that long codewords can be decoded successfully by iterative decoding algorithms
 Threshold
 Error floor
 Capacity limit
 - To compare the performance of different code rates, we can compute *the distance between its decoding threshold and channel capacity*, or **gap to capacity**

I. Low-density Parity Check Codes

II. Rate-compatible LDPC Codes

III. Optical Satellite-Assisted Internet of Vehicles

IV. My Proposal

Cuong Nguyen	(CCL, UoA)
--------------	------------

6/23

Rate-Compatible LDPC Codes

- **Rate-compatible (RC) family** is a nested family of codes where *higher code rates are parts of lower code rates*
- Advantages of RC family code
 - 1. Allows coding across a range of rates using a common encoder/decoder infrastructure
 - 2. Allows the change of code rate to adapt the channel conditions
- For LDPC codes, RC family can be obtained by two common methods, i.e., **puncturing** and **code extension**

Puncturing

- **Puncturing** is the process in which we remove columns from a parity check matrix of low-rate code to obtain that of higher-rate codes
- Iterative decoding algorithms depend heavily on code structure while puncturing affects *the structure of optimized mother code rate*
- ⇒ Obtained codes from puncturing may have poor performance for iterative decoding
 - For example: Consider the punctured family of RC-LDPC codes with the base code rate of $1/2^1$

Code rate	Decoding threshold (dB)	Capacity threshold (dB)	Gap to capacity (dB)
1/2	0.357	0.188	0.169
3/5	1.2	0.683	0.275
4/5	2.9	2.088	0.83

The obtained code rates by puncturing tend to have a wider gap to capacity

¹M. El-Khamy, J. Hou, and N. Bhushan, "Design of rate-compatible structured ldpc codes for hybrid arq applications," *IEEE J. Sel. Areas. Commun.*, vol. 27, no. 6, pp. 965–973, Aug. 2009. Example 2: 2009.

Cuong Nguyen (CCL, UoA)

Code Extension

- Code extension is a method to construct RC-LDPC codes by extending the parity check matrix by *an equal number* of columns and rows
- *Lower-rate codes* are obtained by extending the parity check matrix of a base code rate

Cuong 1	Nguyen	(CCL,	UoA)
---------	--------	-------	------

Code Extension: My Results

■ The figure plots the BER/FER performance of different code rates by code extension with the base code of 3/4

Code rate	Decoding	Capacity	Gap to ca-
	threshold	threshold	pacity
3/4	1.706	1.628	0.078
3/5	0.785	0.682	0.103
1/2	0.278	0.188	0.090

The obtained code rates by code extension have uniform gaps to the capacity

I. Low-density Parity Check Codes

II. Rate-compatible LDPC Codes

III. Optical Satellite-Assisted Internet of Vehicles

IV. My Proposal

Cuong Nguyen	(CCL, UoA)
--------------	------------

Optical Satellite-Assisted Internet of Vehicles (IoVs)

• Internet of Vehicles (IoV) is defined as the network of vehicles and related entities to connect and exchange data over the Internet

Applications

- Safety: emergency call, speed control, ...
- Navigation: traffic congestion control, real-time information, parking helper, ...
- Business: high-speed Internet for vehicles, infotainment, ...
- *To support the future applications of IoVs*, free-space optical (FSO)-based satellite is expected to be a **key technology**
 - 1. Extremely high data rate (Gbps or even Tbps) thanks to the *usage of infrared frequency bands (187-400 Thz)*
 - 2. Global coverage area with the assistance of low-earth orbit (LEO) satellites

イロト イポト イヨト イヨト

Challenging Issues

• The FSO link is adversely affected when propagating through the atmosphere

1. Atmospheric Attenuation

- Caused by molecular absorption and aerosol scattering
- Happens mostly in the range below 20 km
- \implies Reduction in the received power

2. Atmospheric Turbulence

• Caused by inhomogeneity in temperature and pressure along the propagation path

 \implies Fluctuation in the received signal

The channel of optical satellite systems is unreliable

Possible Solutions: Reliable Methods

- *To cope with unreliable channels*, reliable transmission protocols are implemented
 - Two common methods: Automatic Repeat reQuest (ARQ) and Error Correction Code (ECC)
- 1. Automatic Repeat reQuest (ARQ): Retransmit erroneous frames
 - *In a time-varying channel*, increase the frequency of retransmissions when the channel is noisy
 - ⇒ Increase the delay, *especially in satellite systems*
- 2. Error Correction Code (ECC): Add redundancy to correct errors
 - Inefficient throughput due to the redundancy when the channel is less noisy
 - Lose the reliability once the frame is uncorrectable
- To mitigate the limitations of both protocols, Hybrid ARQ (HARQ) is proposed
 - Combination of ARQ and ECC
 - Data is encoded by ECC and used for (re)transmissions

Cuong Nguyen	(CCL, UoA)
--------------	------------

イロン イボン イヨン イヨン

Literature Reviews: HARQ in Optical Satellite Com.

Survey of Major Studies of HARQ designs for optical satellite systems

Reference	Main Contributions
20162	The performance of HARQ with adaptive rate Reed-Solomon (RS) code in an inter-
2010	HAPs' channel is evaluated under the effects of delayed CSI
A novel design of cooperative HARQ using the puncturing RS is proposed for	
2021	based satellite-HAP-Vehicle system
20224	The study considered the design of HARQ with sliding window and the rate-
2022	compatible convolutional code (RCPC) for FSO-based satellite-to-ground systems

The ECCs of current designs mainly focus on **Reed-Solomon** and convolutional code

³H. D. Nguyen, H. D. Let, C. T. Nguyen, *et al.*, "Throughput and delay performance of cooperative harq in satellite-hap-vehicle fso systems," in *Proc. IEEE Veh. Technol. Conf. (VTC2021-Fall)*, IEEE, 2021, pp. 01–06.

⁴H. D. Le and A. T. Pham, "On the design of fso-based satellite systems using incremental redundancy hybrid arq protocols with rate adaptation," *IEEE Trans. Veh. Technol.*, voh. 714 m. 1, op. 463=477, 2021; a c.

Cuong Nguyen (CCL, UoA)

LDPC HARQ

March 9, 2023

15/23

²S. Parthasarathy, A. Kirstaedter, and D. Giggenbach, "Performance analysis of adaptive hybrid arq for inter-hap free-space optical fading channel with delayed channel state information," in *Proc. IEEE Photon. Netw.*, VDE, 2016, pp. 1–7.

Motivations

- To cope with the time-varying channel of optical satellite communication, the usage of HARQ is necessary
- ⇒ HARQ Incremental Redundancy (IR) is an efficient variant thanks to retransmissions of only redundancy parts when errors occur
 - One of the most critical issues for HARQ designs in the context of IoVs is having a proper ECC satisfying low-complexity encoding and high efficiency
- ⇒ LDPC codes are especially suitable for the design of HARQ in the context of IoVs
 - When combining LDPC codes with HARQ-IR, a proper design of RC-LDPC is necessary
- ⇒ The family of RC-LDPC codes by code extension shows good performance compared to the ones by puncturing

The combination of RC-LDPC by code extension and HARQ-IR is a promising candidate for the optical satellite-assisted IoVs

イロト イポト イヨト イヨト

I. Low-density Parity Check Codes

II. Rate-compatible LDPC Codes

III. Optical Satellite-Assisted Internet of Vehicles

IV. My Proposal

Cuong Nguyen	(CCL, UoA)
--------------	------------

RC-LDPC by Code Extension

- The RC-LDPC codes are constructed from parity check matrices
- The generator matrices can be constructed in the nested form accordingly
- **Example:** Consider a family of RC-LDPC codes with three code rates $C_1 \ge C_2 \ge C_3$

Cuong Nguyen	(CCL, UoA)
--------------	------------

Example: HARQ-IR with RC-LDPC by Code Extension (1)

Example: HARQ-IR with RC-LDPC by Code Extension (2)

Example: HARQ-IR with RC-LDPC by Code Extension (3)

Cuong Nguyen (CCL, UoA)

LDPC HARO

21/23

Example: HARQ-IR with RC-LDPC by Code Extension (4)

Cuong Nguyen (CCL, UoA)

LDPC HARQ

March 9, 2023

22/23

Proposal for Optical Satellite-Assisted IoVs

Example: Consider an optical satellite system with HARQ-IR and burst transmission. The burst size $T_{\rm B} = 100$ (frames) and HARQ persistent level is 3

