On the Design of Power Adaptation for Free-Space Optical (FSO) – based Vertical Networks using Machine Learning Approach

Presenter: Tinh Nguyen

Computer Communications Lab., The University of Aizu

Outline

\circ Introduction

- Free-Space Optics (FSO)-Based Vertical Network
- Critical Issues and Challenges
- Motivations
- Goals of the Study
- Power Adaptation Design with Channel Prediction
 - System Description
 - Power and Transmission Mode Thresholds
 - Channel State Model
 - Assigning the Channel States to Transmission Modes
 - ESN Prediction Model

Performance Analysis and Results

• Conclusions

Mar. 9, 2023

Introduction

Current 5G Network and Its Limitations

- \circ We are now witnessing the explosion of the 5G technology
 - 5G is mostly based on <u>terrestrial infrastructure</u> using <u>radio frequency (RF)</u> <u>transmission</u>

Core
 Network

RF link

Remote

antenna unit

- Two main limitations:
 1) Restricted Coverage Areas
 - Limit the support to rural/remote

areas, cannot guarantee global coverage

2) Data-rate Limitation

Terrestrial cellular mobile networks using RF transmission

Base station

RF link

RF link

User

links

User

Users

Base station

 Can support Mbps data rate or lower → <u>need higher data rates</u> for future applications (~ Gbps or even Tbps)

Free-Space Optics (FSO)-Based Vertical Network

- FSO is a line-of-sight technology using <u>infrared frequency bands</u> (187 400 THz) for data transmission in free space
 - Large bandwidth, <u>high-speed</u> connections (~ Gbps or even Tbps)
 - High level of security, immunity to electromagnetic interference
- Vertical/space network
 - By <u>employing flying platforms</u>, e.g., satellites, Unmanned Aerial Vehicle (UAV), and High-Altitude Platform (HAP) → Providing <u>wide</u> <u>coverage</u> and <u>flexible deployment</u>

→ With global coverage and extremely high data rate, FSO-based vertical network is expected to be a key technology for the beyond-5G wireless networks Mar. 9, 2023

Critical Issues and Challenges (1)

• Critical issues:

• FSO link is sensitive to atmospheric turbulence, which causes the scintillation effect

Air pockets with different refractive indexes

power fluctuations at the receiver

→ Mitigation techniques such as adaptive rate/power/coding rate and hybrid FSO/RF schemes are crucial to maintaining reliable transmissions

Critical Issues and Challenges (2)

• Challenges:

• The system changes its parameters according to the feedback of the channel state information (CSI), a parameter that describes the current fading channel conditions

\rightarrow The performance heavily depends on the accuracy of the CSI

• The CSI tends to be outdated due to long feedback distances (up to thousands of kilometers)

 \rightarrow An efficient channel prediction scheme for such FSO system is required

Motivations

• The flying platforms (satellites, HAPs, UAVs) have limited power \rightarrow not be able to operate for a long duration

 \rightarrow It is necessary to design an energy-efficient communication system that can reduce energy consumption and extend the battery life of wireless terminals.

• The adaptive power schemes have been widely applied for radio frequency (RF) communications and FSO-based terrestrial systems

 \rightarrow They have not been studied FSO-based space networks, where the CSI tends to be outdated due to long transmission distance

• Other mitigation techniques that are currently studied for FSO-based vertical networks, such as hybrid FSO/RF, adaptive rate/coding rate, often assume that the CSI is known and perfect for the transmitter

 \rightarrow It lacks practicality. Therefore, it's necessary to have an efficient channel prediction scheme for such networks

The adaptive power system with channel prediction is a promising candidate.

Goals of the Study

- We design an energy-efficient scheme for the FSO system, which adapts the transmitted power according to the current channel status
- The CSIs are predicted beforehand by using the machine learning (ML)-based echo state network (ESN) model thanks to its simple structure yet high efficiency
- We analyze the performance of the proposed system with different channel conditions

Power Adaptation Design with Channel Prediction

System Description (1)

• Main idea:

- We fix the power P_{T0} and change the gain *G* of the Erbium-doped fiber amplifier (EDFA) according to the current channel conditions (channel gain h) to meet the QoS, e.g., BER.
- The transmitted power after being amplified by the EDFA is $P_T = GP_{T0}$
- The system adapts the gain *G* according to the feedback CSIs, which are predicted in advance by the ESN model

System Description (2)

• Let $h_1^* < h_2^* < ... < h_M^*$ be the switching thresholds for *M* different transmission modes and *h* is the instantaneous channel gain. The transmission mode *n* is selected if $h_n^* \le h < h_{n+1}^*$. The transmitted power changes for each mode

A system illustration with M = 5

Power and Transmission Mode Thresholds

• Power thresholds:

- The EDFA has its own range of gain: $[G_{\min}, G_{max}]$. Therefore, the transmitted power also falls into the range $[P_{T_{\min}}, P_{T_{max}}]$
- We divide the power range into $P_{T_{min}} \leq P_1 < P_2 < \cdots < P_M \leq P_{T_{max}}$ (1), such that each value satisfies the gain step of the EDFA

Transmission Mode Thresholds

- To maintain a predefined BER using a particular modulation scheme, e.g., K-QAM, we need a certain SNR, denoted as γ_{tar}
- Meanwhile, based on the transmit power and the channel gain, the SNR can be computed as $\gamma_{tar} = \frac{P_i^2 h_i^{*2}}{\sigma_{noise}^2}$ (2)
- From (1) and (2), a set of transmitted power threshold P_i and transmission mode threshold h_i^* can be derived

Channel State Model

- We now design the channel-state model to effectively facilitate the operation of the system over turbulence fading channels
 - Data are transmitted in fixed-time bursts (T_{burst}) whose duration is shorter than the coherence time of the fading channel
 - We first divide the channel into states defined by a range of CSIs
 - The selection of the range of CSIs satisfies the condition that all channel states' intervals are equal to T_{burst} . The interval of the channel state i^{th} , $\overline{\tau}_i$, depends on the statistics of the channel and can be expressed as

$$\overline{\tau}_{i} = \frac{\Pr_{i}}{\operatorname{LCR}(h_{i}) + \operatorname{LCR}(h_{i+1})} = T_{burst}$$
(3)

where $LCR(h_{th})$ is the level crossing rate at the certain threshold h_{th} , defined as the average number of times per second that the channel gain passes the threshold h_{th} , and Pr_i is the probability at channel state i^{th}

Assigning the Channel States to Transmission Modes

• When all the channel states and transmission modes have been determined, we assign the states to each mode as follows

ESN Prediction Model

• ESN model has a simple structure

- Feedforward neural network with three layers
- There's an internal reservoir that can store the historical information
- \rightarrow ESN performs enormous potential in time-series prediction

 Prediction accuracy: we evaluate the prediction performance of the ESN model

 \rightarrow The ESN model offers excellent prediction performance

Winter Camp 2023

Performance Analysis and Results

Energy Efficiency: Adaptation vs. Non-Adaptation

- We first compare the energy efficiency in two cases: using the adaptive system and non-adaptive system
 - We assume that the channel is perfect (there's no delay and error in feedback CSI)
 - The power used for the nonadaptive mode is the power of mode 1 of the adaptive mode

We can see that

→ The adaptive system offers a much better energy efficiency than that of the non-adaptive system

 \rightarrow The gap is more considerable when the turbulence condition is stronger

Energy Efficiency: Perfect CSIs vs. Delayed CSIs

Next, we use the real channel data to evaluate the EE in case of delayed CSIs
 25 × 10⁻³ Additional Energy Required to Transmit One Bit

→ The additional energy required to transmit one bit in case of delayed CSIs compared to the perfect CSIs increases when the delay increases

→ When the fading condition is stronger, the effect of delayed CSI on the EE is more severe

Conclusions

- We presented the power adaptation design for FSO-based vertical networks with channel prediction
- Remarkable observations from the result
 - The EE of the adaptive system is much better than that of the non-adaptive system
 - The effect of delayed CSI on EE increases when the turbulence condition is stronger
- Future Work
 - Evaluate the EE in case of predicted CSI

Thank you for your listening!