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UAV-mounted Base Stations

» A promising technology towards high-quality services
and ubiquitous coverage

* Potential use cases:

* Remote areas
« Large open-air events (concerts, carnivals, etc)
« Natural disaster-affected areas

* Challenge:

=yat, . ; i
The UAV-BSs automatically adjust their locations s St ) Frontian commmuniaton

over time in response to dynamics of the network | Ground base station == Backhaul communication
situation (e.g., the user’s spatial distribution)

ABSs connect with Ground Terminals (fronthaul connection)
and the terrestrial infrastructure (backhaul connection) [1]

[11P. Q. Viet and D. Romero, “Aerial Base Station Placement: A Tutorial Introduction,” IEEE Commun. Mag., vol. 60, no. 5, pp. 44-49, May 2022.



Single-UAV Deployment



UAV-aided Satellite-Terrestrial Networks

Network scenario:

e One UAV-BS is deployed to complement the
terrestrial base station (macro BS).

e The UAV-BS hold backhaul links with both
the LEO satellite and the macro BS.

e Ground users are either served by the UAV-
BS or the macro BS.

Problem Statement:

- Given a random distribution of users with
unsatisfied data rates

- How the UAV-BS can complement the macro
BS to provide better rates for this user set.
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Training with A2C Algorithm (1/2)

e State: the users’ and UAV-BS’s o e AGENT
coordinates I
e Actions: moving with 5 possible directions State —» Action

(1) northward,
(2) westward,

l ENVIRONMENT

(3) southward, . e
(4) eastward, .
(5) remain stationary (no movement) Action ¥ Reward "
State —| “JEA
e Reward:
+1  ifd(t+1) > d(t), l‘“s’
-1 if d(t'l'l) < d(t), —{ Advantage = Q(s.a) - V()
0.1 ifd@t+1)=d@t) | e State

(d(t): the average data rate of all users at time step t)



Training with A2C Algorithm (2/2)

A2C = Advantage Actor-Ciritic [1], e ENT
a policy-based RL algorithm ]

Actor: outputs logits for a categorical probability
distribution over all possible actions.

State Action

e Intraining: update the actor’s params to

l ENVIRONMENT

maximize the advantage function. » e
. . . - - &
Critic: estimates the state-value function of the Action Reward -
environment’s state. ot -
ate —=| “FIA
e In training: update the critic’s params to lws) .
minimize the difference between the observed I oe——"
and the predicted value functions. e
......................... State

Advantage function: how much better it is to take a
specific action compared to the average, general
action at the given state

[11 V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in Proceedings of the 33rd
International Conference on Machine Learning (ICML), vol. 48, 2016, p. 1928-1937.



A2C Algorithm: Training Results

The agent gradually forms better movement The action selected by the agent gradually
policy for the UAV-BS with higher rewards becomes less random (i.e., more intentional)
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A2C Algorithm: Testing Results

850 - o)
To demonstrate the generalization ability of the agent 800 - . °
after training, a trained A2C agent is tested to control o o & o9
the UAV-BS’s movements in one single episode. 7301 ° ° e 8 o

- In the test environment, the spatial distribution of

users and the initial location of the UAV were set Eesoq o ° °
up randomly and not previously seen by the 600 o
agent.

550

- The agent was not trained during the test.

O Users' positions
O The UAV's initial position
X The UAV's final position
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Behavior of an A2C agent after 4 hours of training



Multi-UAV Deployment
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Multi-UAV Deployment

Satellite 2 Satellite 3

Satellite 1
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i . backhaul links

- Satellite-Air-Ground Integrated
Networks (SAGIN): multiple UAV-BSs
are deployed to complement the
terrestrial BS.

- Take into account constraints of the
FSO-based backhaul links with LEO
satellites.

- Multiple UAV-BSs are expected to
cooperate to efficiently serve the ground

users — Multi-agent RL Multi-agent RL for

playing Go
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Multi-Agent Reinforcement Learning

Current setups:

One single macro BS in the top-left corner.

Three UAV-BSs cooperate to support the
macro BS in providing high data rates for the
ground users.

The RL agent learns directly from image
pixels and are required to cooperate with
each other and with the macro BS.

Simulation results: not yet available.

[

lllustration of the learning environment
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Thank you for your attention!
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Appendix



RL Formulation

e An agent learning to interact with its
environment.

e At each time step, the agent receives the
environment's state, and the agent must
choose an appropriate action in response.

e One time step later, the agent receives a
reward (the environment indicates whether
the agent has responded appropriately to the
state) and a new state.

e The agent aim to maximize the expected
cumulative reward (i.e., the expected sum
of rewards attained over all time steps).

state
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reward
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action
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The agent-environment interaction in reinforcement learning.

(Sutton and Barto, 2017)



State-Value Function and Bellman Equation

State-Value Functions

¢ The state-value function for a policy 7 is denoted v,.. For each state s € §, it yields
the expected return if the agent starts in state s and then uses the policy to choose its
actions for all time steps. That is, vz (s) = E;[G¢
value of state s under policy 7.

S: = s||We refer to v,(s) as the

Bellman Equations

The discounted return (cumulative reward) at time t:
Gy = Ry + "}’Rf___;z + "}’2R1_3 S T

* The Bellman expectation equation for v, is:fv;(s) = E;[R;.1 + Yv:(S:.1)|S; = s

Optimality

 Apolicy 7' is defined to be better than or equal to a policy 7 if and only if
v (8) > vy(s)foralls € S.

Q
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Action-Value Function and Optimal Policies

Action-Value Functions

The discounted return (cumulative reward) at time t:

e The action-value function for a policy 7 is denoted g,. For each state s £ & and action ;
policy I Gi = Ri1+~vRio + ”Jr'zRf__,'} +...

a € A, ityields the expected return if the agent starts in state s, takes action a, and

then follows the policy for all future time steps. That is,
qx(s,a) = E;[Gt|S; = s, A; = a]|We refer to ¢; (s, a) as the value of taking action Q

a in state s under a policy 7 (or alternatively as the value of the state-action pair

s, a).

* All optimal policies have the same action-value function g, called the optimal action-

value function.
The problem now is how

to estimate the optimal
value function g*(s,a)

Optimal Policies

* Once the agent determines the optimal action-value function g,, it can quickly obtainan o
optimal policy 7, by setting|m.(s) = arg max, 4(s) g. (s, @).
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