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UAV-mounted Base Stations

• A promising technology towards high-quality services 

and ubiquitous coverage 

• Potential use cases:

• Remote areas 

• Large open-air events (concerts, carnivals, etc)

• Natural disaster-affected areas

• Challenge:

The UAV-BSs automatically adjust their locations

over time in response to dynamics of the network 

situation (e.g., the user’s spatial distribution)
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ABSs connect with Ground Terminals (fronthaul connection) 

and the terrestrial infrastructure (backhaul connection) [1] 

[1] P. Q. Viet and D. Romero, “Aerial Base Station Placement: A Tutorial Introduction,” IEEE Commun. Mag., vol. 60, no. 5, pp. 44–49, May 2022.



Single-UAV Deployment
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UAV-aided Satellite-Terrestrial Networks

Network scenario:

● One UAV-BS is deployed to complement the 
terrestrial base station (macro BS).

● The UAV-BS hold backhaul links with both 
the LEO satellite and the macro BS.

● Ground users are either served by the UAV-
BS or the macro BS.

Problem Statement: 

- Given a random distribution of users with 
unsatisfied data rates

- How the UAV-BS can complement the macro 
BS to provide better rates for this user set.
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Training with A2C Algorithm (1/2)

● State: the users’ and UAV-BS’s 
coordinates

● Actions: moving with 5 possible directions 
(1) northward,
(2) westward,
(3) southward,
(4) eastward,
(5) remain stationary (no movement)

● Reward:
+1 if d(t+1) > d(t), 
-1 if d(t+1) < d(t),
-0.1 if d(t+1) = d(t)

(d(t): the average data rate of all users at time step t)
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Training with A2C Algorithm (2/2)

A2C = Advantage Actor-Critic [1], 
a policy-based RL algorithm

Actor: outputs logits for a categorical probability 
distribution over all possible actions.

● In training: update the actor’s params to 
maximize the advantage function.

Critic: estimates the state-value function of the 
environment’s state.

● In training: update the critic’s params to 
minimize the difference between the observed 
and the predicted value functions.

Advantage function: how much better it is to take a 
specific action compared to the average, general 
action at the given state
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[1] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in Proceedings of the 33rd 

International Conference on Machine Learning (ICML), vol. 48, 2016, p. 1928–1937.



A2C Algorithm: Training Results
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The action selected by the agent gradually 

becomes less random (i.e., more intentional)

The agent gradually forms better movement 

policy for the UAV-BS with higher rewards



A2C Algorithm: Testing Results

To demonstrate the generalization ability of the agent 

after training, a trained A2C agent is tested to control 

the UAV-BS’s movements in one single episode. 

- In the test environment, the spatial distribution of 

users and the initial location of the UAV were set 

up randomly and not previously seen by the 

agent.

- The agent was not trained during the test.
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Behavior of an A2C agent after 4 hours of training



Multi-UAV Deployment
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Multi-UAV Deployment

- Satellite-Air-Ground Integrated 

Networks (SAGIN): multiple UAV-BSs 

are deployed to complement the 

terrestrial BS.

- Take into account constraints of the 

FSO-based backhaul links with LEO 

satellites.

- Multiple UAV-BSs are expected to 

cooperate to efficiently serve the ground 

users → Multi-agent RL
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Multi-agent RL for 

playing Go



Multi-Agent Reinforcement Learning
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Current setups: 

- One single macro BS in the top-left corner.

- Three UAV-BSs cooperate to support the 

macro BS in providing high data rates for the 

ground users.

- The RL agent learns directly from image 

pixels and are required to cooperate with 

each other and with the macro BS.

- Simulation results: not yet available.

Illustration of the learning environment
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Thank you for your attention!
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Appendix
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RL Formulation

● An agent learning to interact with its 

environment.

● At each time step, the agent receives the 

environment's state, and the agent must 

choose an appropriate action in response.

● One time step later, the agent receives a 

reward (the environment indicates whether 

the agent has responded appropriately to the 

state) and a new state.

● The agent aim to maximize the expected 

cumulative reward (i.e., the expected sum 

of rewards attained over all time steps).
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The agent-environment interaction in reinforcement learning.

(Sutton and Barto, 2017)



State-Value Function and Bellman Equation
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The discounted return (cumulative reward) at time t:



Action-Value Function and Optimal Policies
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The discounted return (cumulative reward) at time t:

The problem now is how 

to estimate the optimal 

value function q*(s,a)
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