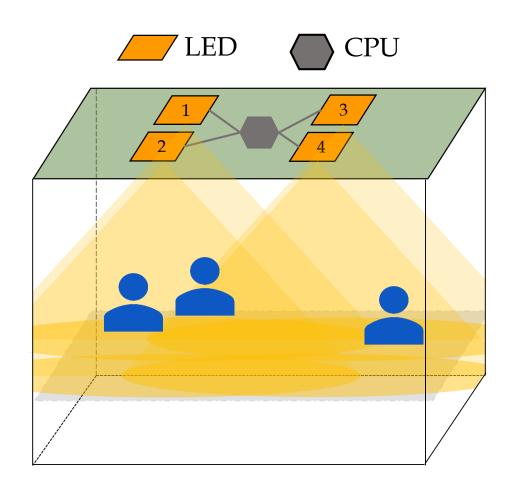
Joint Probabilistic Shaping and Precoding Design for MU-MISO VLC Systems

Nguyen Khac Thang Computer Communications Labs., The University of Aizu

Feb. 27, 2024

Contents

- **❖**Introduction
- **❖**System model
- Firefly algorithm
- *Results and discussions

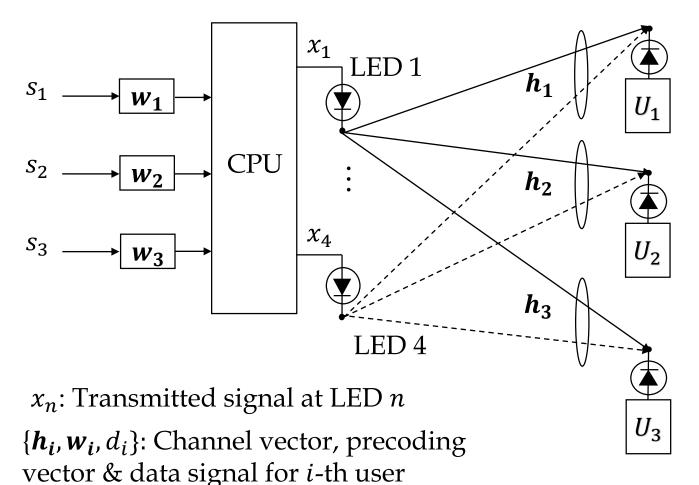

☐ Visible light communication (VLC)

- **❖** Dual functionality
 - Illumination (primary)
 - Communication (secondary)
- ❖ Immunity to interference from other electromagnetic sources
- **❖** Environment friendly
 - Hospital
 - Airplane

VLC network is expected to support multiple mobile users

☐ Multi-user Multiple Input Single Output VLC system (MU-MISO VLC)

- N_T LEDs simultaneously serve K users
- Each user is equipped with a single-photodiode
 (PD) receiver


A multi-user multiple input single output (MU-MISO) VLC broadcast system

Drawbacks:

- Multi-user interference (MUI)
- Optical power constraint (peak and average)

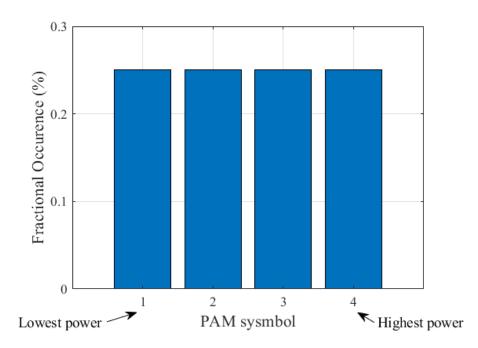
☐ Precoding design

Linearly encoding s_i by a vector \mathbf{w}_i to reduce the effect of multi-user interference at received signal

☐ Received signal at the *i*-th user

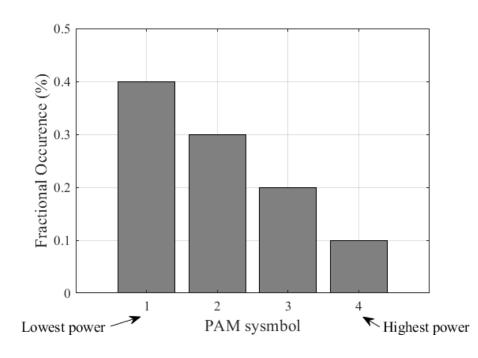
$$y_i = \mathbf{h_i} \mathbf{w_i} s_i + \mathbf{h_i} \sum_{j=1, j \neq i}^{K} \mathbf{w_j} s_j + n_i$$

Multi-user interference (MUI)

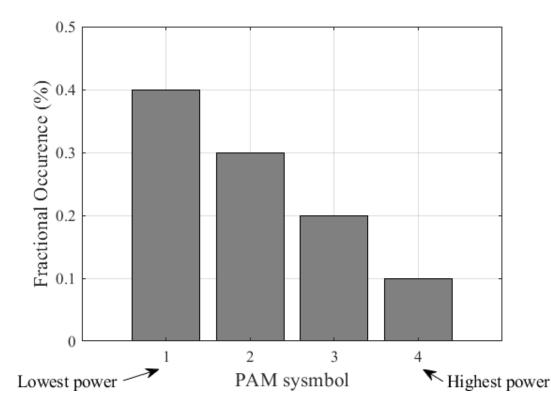

☐ By generate precoding vector **w** based on the channel state information, MUI can be eliminated

PCS is an approach to enhance the sum rate under power constraints

☐ Probabilistic constellation shaping (PCS)


Standard transmission

Each symbol transmitted with equal probability



Shaped transmission

- Each symbol transmitted with different probability
- Higher power symbols transmitted less frequently

- ☐ Probabilistic constellation shaping (PCS)
- Each symbol transmitted with different probability
- Higher power symbols transmitted less frequently

- ✓ Average power decreases
- ✓ Reduce non-linear effects in LEDs

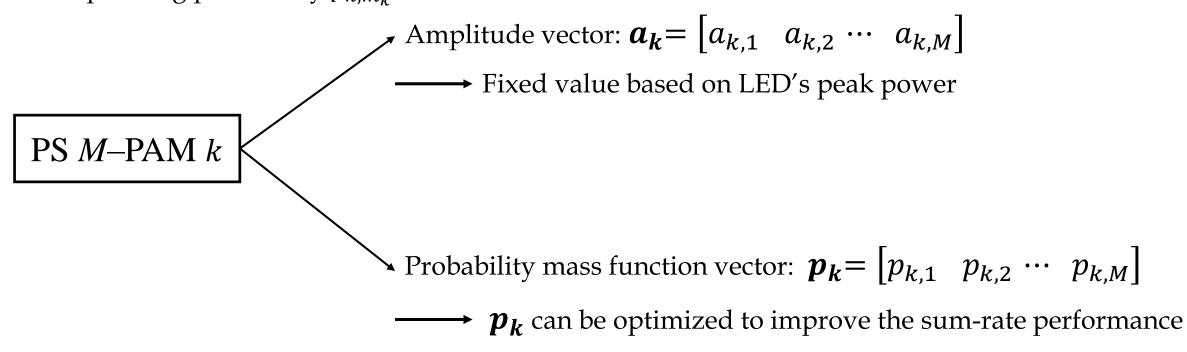
Improve the system's sum rate under the power constraints

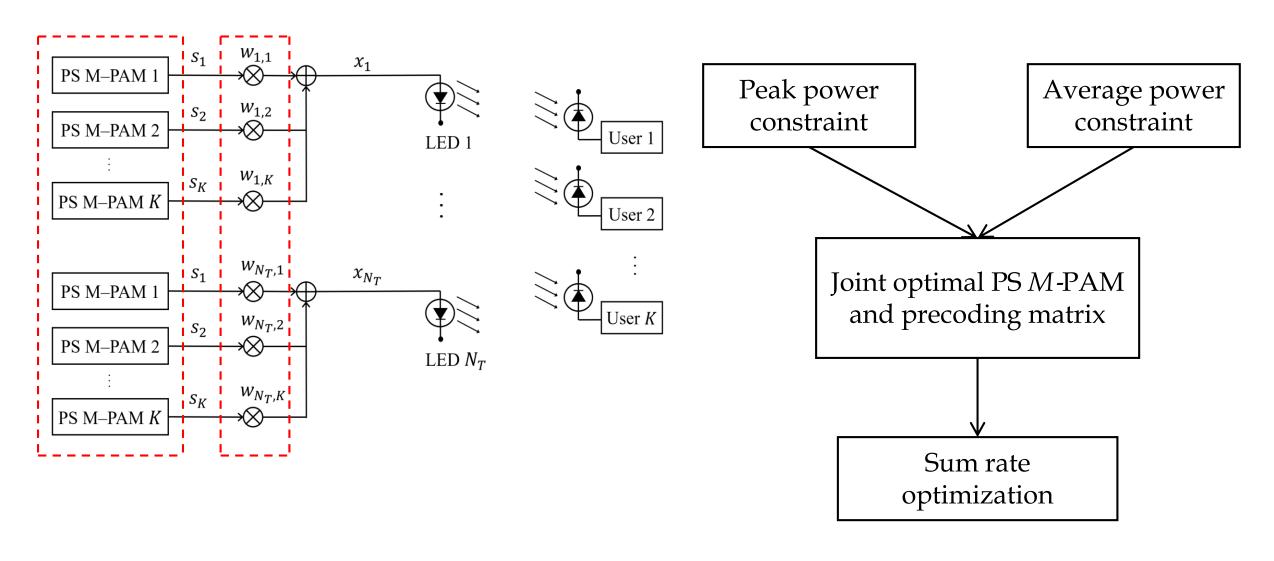
Reference	Main Contributions
[1] - 2022	Propose joint design of probabilistic M-PAM shaping and precoding to optimize the channel capacity of the MISO-VLC system with one user
[2] - 2022	Propose a novel adaptive coded spatial modulation scheme with probabilistic M-PAM shaping to improve the spectral efficiency of the MISO-VLC system with one user

Our work is propose a joint design of precoding and probabilistic constellation shaping to enhance the sum-rate performance of the multi-user VLC system

^[1] F. Yang and Y. Dong, "Joint Probabilistic Shaping and Beamforming Scheme for MISO VLC Systems," in IEEE Wireless Communications Letters, vol. 11, no. 3, pp. 508-512, March 2022, doi: 10.1109/LWC.2021.3134268.

^[2] A. Kafizov, A. Elzanaty and M. -S. Alouini, "Probabilistic Shaping-Based Spatial Modulation for Spectral-Efficient VLC," in IEEE Transactions on Wireless Communications, vol. 21, no. 10, pp. 8259-8275, Oct. 2022, doi: 10.1109/TWC.2022.3164991.


☐ MU-MISO VLC system with PCS



 \square Probabilistic shaping *M*-PAM *k*

With $k \in \{1, 2, ..., K\}, m_k \in \{1, 2, ..., M\}$),

 $s_k \sim \{s_{k,m_k}\}: s_k$ is a data symbol drawn from the PS M-PAM k with an amplitude a_{k,m_k} and the corresponding probability p_{k,m_k} .

☐ Problem formulation

$$\mathbb{P}1: \max_{\mathbf{P}, \mathbf{W}} \sum_{k=1}^{K} R_k(\mathbf{P}, \mathbf{W})$$
 Sum rate maximization

subject to

$$\sum_{k=1}^{K} \mathbf{a}_{k}^{T} \mathbf{p}_{k} \mathbb{1}_{N_{T} \times 1}^{T} \mathbf{w}_{k} \leq \mathcal{E}, \quad \longrightarrow \quad \text{Average power constraint}$$

$$\|[\mathbf{W}]_{n,:}\|_{1} \leq 1, \ \forall n \in \{1, 2, \cdots, N_T\}, \longrightarrow$$
 Peak power constraint

$$\mathbf{0}_{K\times M} \leq \mathbf{P} \leq \mathbf{1}_{K\times M},$$

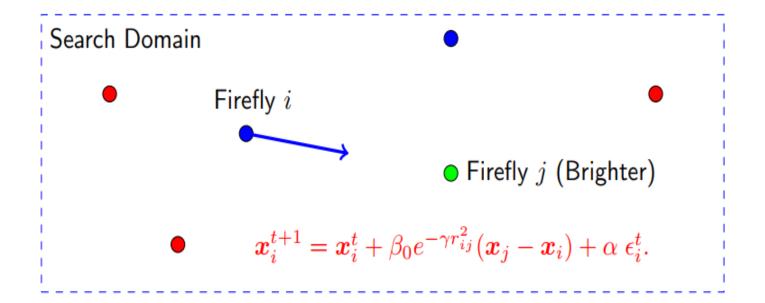
$$\mathbf{P} \times \mathbb{1}_{M \times 1} = \mathbb{1}_{K \times 1},$$

•
$$0 < \alpha = \frac{\varepsilon}{N_T A} \le 1$$
 is power ratio

•
$$\mathbf{P} = [p_1 \ p_2 \cdots \ p_K]$$
: PMF matrix of K
PS M -PAM constellation

• W = $[w_1 \ w_2 \cdots \ w_K]$: precoding matrix

Non-convex problem with multiple variables


Firefly algorithm

- ❖ The firefly algorithm (FA) was developed by Prof. Xin-She Yang in 2008
- ❖ It is a Nature-Inspired Optimization Algorithms (metaheuristic algorithm)

Firefly Behaviors and Idealization (Yang, 2008)

- Fireflies are unisex so that one firefly will be attracted to other fireflies regardless of their sex
- The attractiveness is proportional to the brightness and they both decrease as their distance increases.
- For any two flashing fireflies, the less brighter one will move towards the brighter one.
- If no brighter firefly can be seen, a firefly will move randomly.

Firefly algorithm

- ☐ The objective landscape maps to a light-based landscape and fireflies swarm into the brightest points/regions.
- ☐ For a maximization problem, the brightness can simply be proportional to the value of the objective function.

- x_i^t is the solution vector (or position of firefly i) in the search space at iteration t
- β_0 is the attractiveness at zero distance (i.e., $r_{ij} = 0$)
- γ is the absorption coefficient
- ϵ_i^t is the random vector drawn from a normal distribution
- α is the scaled factor

Firefly algorithm - Algorithmic Equation of FA

Attractiveness

The attractiveness β of a firefly is given by:

$$\beta = \beta_0 e^{-\gamma r^2}$$

where β_0 is the attractiveness at zero distance (r = 0).

Distance

The distance between any two fireflies i and j at x_i and x_j at t-th generation, respectively, is the Cartesian distance:

$$r_{ij} = ||\mathbf{x}_i^{(t)} - \mathbf{x}_j^{(t)}||$$

 \diamond Movement of the firefly i with less brighter to brighter one j (update new solution)

$$\mathbf{x}_{i} = \mathbf{x}_{i} + \beta_{0} e^{-\gamma r_{ij}^{2}} \left(\mathbf{x}_{j}^{(t)} - \mathbf{x}_{i}^{(t)} \right) + \alpha^{(t)} \epsilon^{(t)}$$

It tends to be a global optimizer but can be potentially more computationally expensive

Firefly algorithm - Algorithmic Equation of FA

☐ Problem reformulation: adopt penalty method

Original problem	Reformulated problem
$\mathbb{P}1: \text{ maximize } \sum_{k=1}^{K} R_k(\mathbf{P}, \mathbf{W})$	\mathbb{P} 2 : maximize $\sum_{k=1}^{K} R_k(\mathbf{P}, \mathbf{W}) - P(\mathbf{P}, \mathbf{W})$, where $P(\mathbf{P}, \mathbf{W})$ is the penalty term given as
subject to K	
$\sum_{k=1}^{K} \mathbf{a}_{k}^{T} \mathbf{p}_{k} \mathbb{1}_{N_{T} \times 1}^{T} \mathbf{w}_{k} \leq \mathcal{E},$ $\ [\mathbf{W}]_{n,:}\ _{1} \leq 1, \ \forall n \in \{1, 2, \cdots, N_{T}\},$ $0_{K \times M} \leq \mathbf{P} \leq \mathbb{1}_{K \times M},$ $\mathbf{P} \times \mathbb{1}_{M \times 1} = \mathbb{1}_{K \times 1},$	$P(\mathbf{P}, \mathbf{W}) = \lambda_1 \max \left(0, \sum_{k=1}^K \mathbf{a}_k^T \mathbf{p}_k \mathbb{1}_{N_T \times 1}^T \mathbf{w}_k - \mathcal{E} \right)^2$ $+ \lambda_2 \sum_{n=1}^{N_t} \max \left(0, \ [\mathbf{W}]_{n,:} \ _1 - 1 \right)^2$ $+ \lambda_3 \sum_{k=1}^K \sum_{m=1}^M \min \left(0, p_{k,m} \right)^2 + \lambda_3 \sum_{k=1}^K \sum_{m=1}^M \max \left(0, p_{k,m} - 1 \right)^2$ $+ \lambda_4 \sum_{k=1}^K \max \left(0, \ [\mathbf{P}]_{k,:} \ _1 - 1 \right)^2$
	where λ_j are penalty constants.

Firefly algorithm

The objective landscape maps to a light-based landscape and fireflies swarm into the brightest points/regions.

Algorithm 1 Firefly algorithm

```
1: Generate N populations \{(\mathbf{W}_1, \mathbf{P}_1), \cdots, (\mathbf{W}_N, \mathbf{P}_N)\} ran-
    domly.
 2: Evaluate the light intensities of N population
    I(\mathbf{W}_i, \mathbf{P}_i) \ \forall i \in [1, N].
 3: Rank the fireflies in descending order of light intensities
    I(\mathbf{W}_i, \mathbf{P}_i).
 4: Define the current best solution: I^* := I(W^*, P^*).
 5: for t = 1 : T do
       for m = 1 : N do
          for n = 1 : N do
             if I(\mathbf{W}_n, \mathbf{P}_n) > I(\mathbf{W}_m, \mathbf{P}_m) then
                1. Move firefly m toward firefly n
                2. Update the light intensity of firefly m with
10:
                new (\mathbf{W}_m, \mathbf{P}_m)
             end if
11:
          end for
12:
       end for
13:
       Rank the fireflies in descending order of I(\mathbf{W}_i, \mathbf{P}_i).
14:
        Update the current best solution I^* := I(W^*, P^*)
16: end for
17: return (W^*, P^*).
```

The light intensity of the firefly i, $(\mathbf{W}_i, \mathbf{P}_i)$ is given as

$$I(\mathbf{W}_i, \mathbf{P}_i) = \sum_{k=1}^K R_k(\mathbf{W}_i, \mathbf{P}_i) - P(\mathbf{W}_i, \mathbf{P}_i).$$

For any fireflies m and n amongst the population in the generation t. If $I(\mathbf{W}_n^{(t)}, \mathbf{P}_n^{(t)}) > I(\mathbf{W}_m^{(t)}, \mathbf{P}_m^{(t)})$, the firefly m will move toward the firefly n as

$$\mathbf{W}_{m}^{(t)} = \mathbf{W}_{m}^{(t)} + \beta_{0} \exp\left(-\gamma \left(r_{\mathbf{W},mn}^{(t)}\right)^{2}\right) \left(\mathbf{W}_{n}^{(t)} - \mathbf{W}_{m}^{(t)}\right) + \alpha^{(t)} \mathbf{V}_{1},$$

$$\mathbf{P}_{m}^{(t)} = \mathbf{P}_{m}^{(t)} + \beta_{0} \exp\left(-\gamma \left(r_{\mathbf{P},mn}^{(t)}\right)^{2}\right) \left(\mathbf{P}_{n}^{(t)} - \mathbf{P}_{m}^{(t)}\right) + \alpha^{(t)} \mathbf{V}_{2},$$

where $r_{\mathbf{W},mn}^{(t)} = \|\mathbf{W}_n^{(t)} - \mathbf{W}_m^{(t)}\|$ and $r_{\mathbf{P},mn}^{(t)} = \|\mathbf{P}_n - \mathbf{P}_m\|$ are the Cartesian distances, $V_1 \in \mathbb{R}^{N_T \times K}$, $V_2 \in \mathbb{R}^{K \times M}$ are random matrixes whose elements are drawn from a normal distribution.

Firefly algorithm

☐ Scenario and system parameters

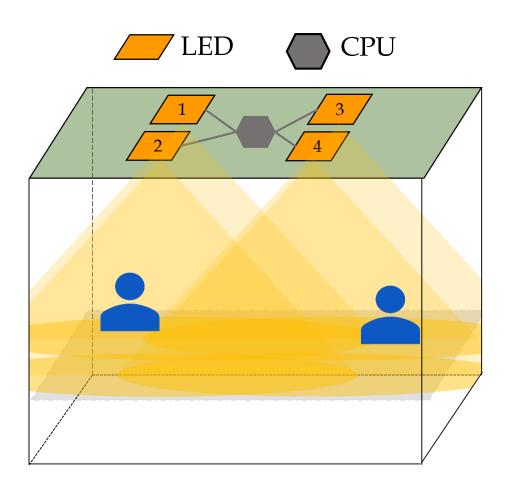
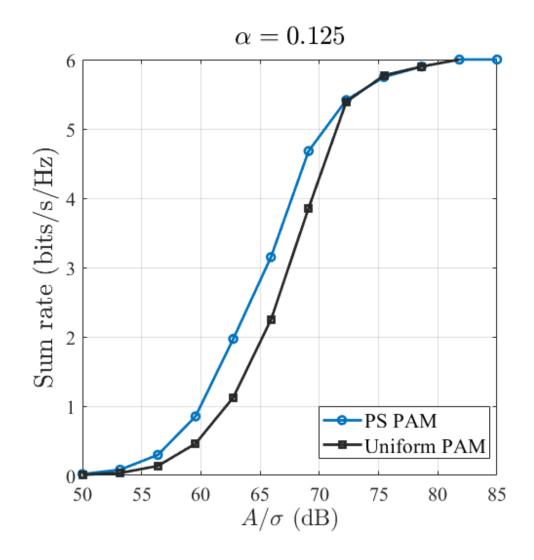
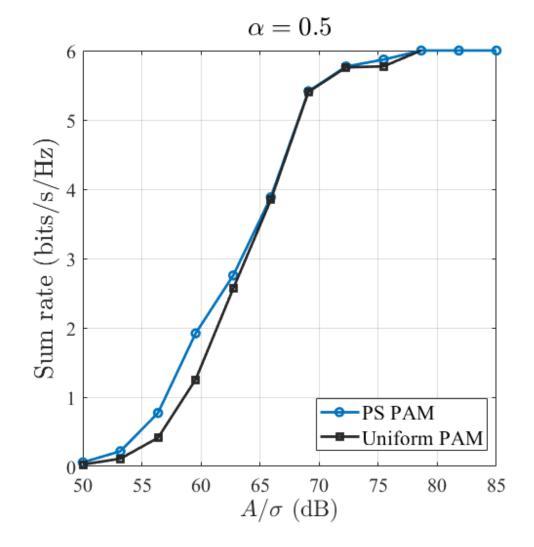
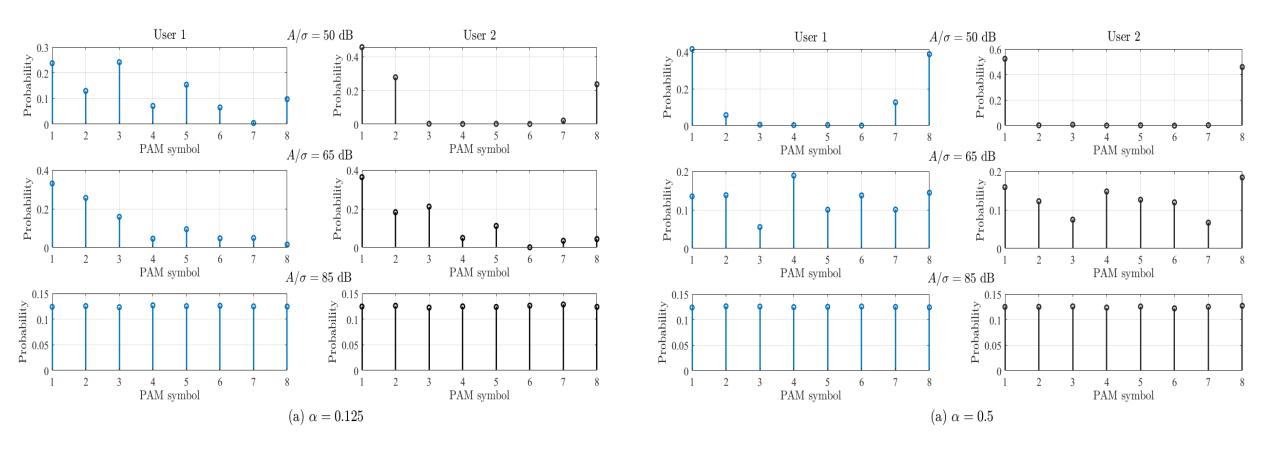
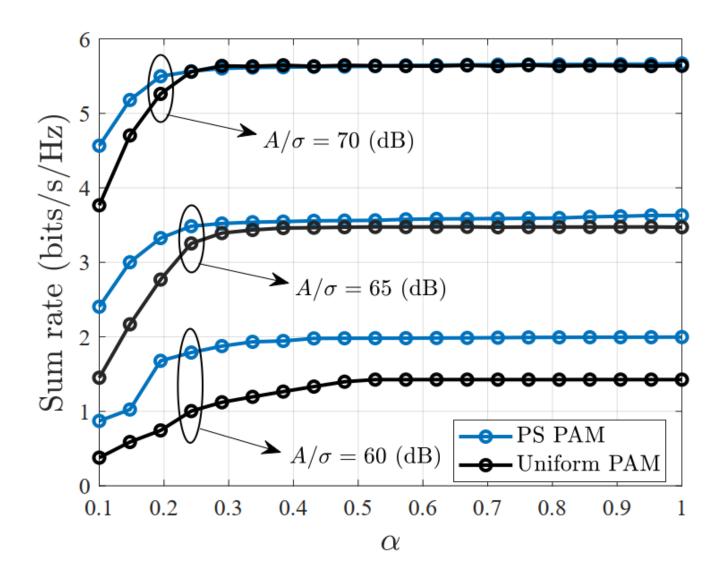
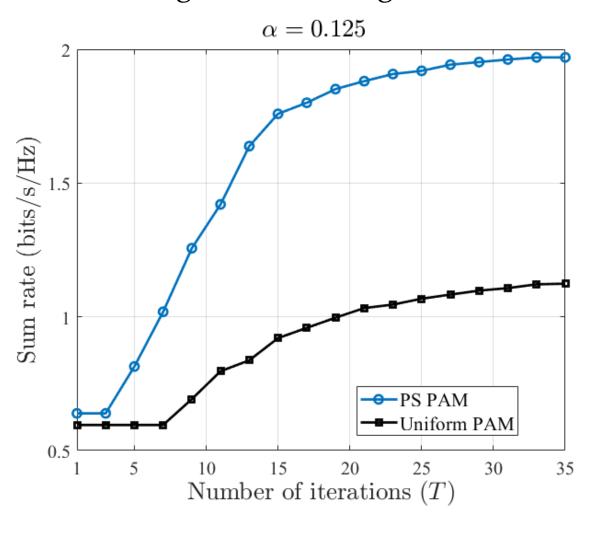




Table 1: System Parameters


Room and LED configurations			
Room dimension (Length \times Width \times Height)	$5 \text{ (m)} \times 5 \text{ (m)} \times 3 \text{ (m)}$		
LED positions	luminary 1: $\left(-\sqrt{2}, -\sqrt{2}, 3\right)$, luminary 2: $\left(\sqrt{2}, -\sqrt{2}, 3\right)$		
	luminary 1 : $\left(-\sqrt{2}, -\sqrt{2}, 3\right)$, luminary 2 : $\left(\sqrt{2}, -\sqrt{2}, 3\right)$ luminary 3 : $\left(\sqrt{2}, \sqrt{2}, 3\right)$, luminary 4 : $\left(-\sqrt{2}, \sqrt{2}, 3\right)$		
LED bandwidth, B	20 MHz		
LED beam angle, ϕ	120° (LED Lambertian order is 1)		
LED conversion factor, η	0.44 W/A		
Receiver photodetectors			
Active area, A_r	1 cm ²		
Responsivity, γ	0.54 A/W		
Field of view (FOV), Ψ	60°		
Optical filter gain, $T_s(\psi)$	1		
Refractive index of the concentrator, κ	1.5		
Noise variance, σ^2	1		
Other parameters			
Ambient light photocurrent, χ _{amp}	10.93 A/(m ² ·Sr)		
Preamplifier noise current density, i_{amp}	$5 \text{ pA/Hz}^{-1/2}$		
	10		

• Sum rate versus peak amplitude




• Optimal PS - 8PAM

• Sum rate versus power ratio α

Convergence of FA algorithm

Unsolved problem

General precoding + PS PAM design	ZF precoding + PS PAM design
Alternative optimization:	Alternative optimization:
Decouple joint design problem into two sub	Decouple joint design problem into two sub
problem with each variable	problem with each variable
1. Sub-problem with P is non-convex:	1. Sub-problem with P is convex:
Solve by Convex-Concave Procedure (CCP)	Solve by Convex Optimization
2. Sub-problem with W is non-convex: unsolved	2. Sub-problem with W is non-convex: unsolved

Thank you for listening!

Q & A