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Introduction - Internet of Things

We are in the era of Internet of Things (loT)?!:

e Enormous loT devices (loTDs) with emerging applications

e Problem: We exploit Computation-intensive & Delay-sensitive
applications on resource-limited (computational, on-board
power) loTDs
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IMehdi Mohammadi et al. “Deep Learning for loT Big Data and Streaming Analytics: A Survey”. In: [EEE
Communications Surveys & Tutorials 20.4 (2018), pp. 2923-2960. DOI: 10.1109/COMST.2018.2844341.
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Introduction - Emerging technologies support loT systems

e Mobile Edge Computing (MEC)?
e Extend cloud computing capabilities (computational, caching

resources) to the edge network
e Real-time, high-bandwidth, low-latency access
e Unmanned Arial Vehicle (UAV)3

e High-mobility, flexible deployment
e Low-latency line-of-sight (LoS) propagation link,

context-awareness networks

2Pawani Porambage et al. “Survey on Multi-Access Edge Computing for Internet of Things Realization”. In: |EEE
Communications Surveys & Tutorials 20.4 (2018), pp. 2961-2991. por: 10.1109/COMST.2018.2849509.

3Lav Gupta, Raj Jain, and Gabor Vaszkun. “Survey of Important Issues in UAV Communication Networks”. In
IEEE Communications Surveys & Tutorials 18.2 (2016), pp. 1123-1152. por: 10.1109/COMST.2015.2495297.
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Introduction - Emerging technologies support loT systems

e Mobile Edge Computing (MEC)?
e Extend cloud computing capabilities (computational, caching
resources) to the edge network
e Real-time, high-bandwidth, low-latency access
e Unmanned Arial Vehicle (UAV)3
e High-mobility, flexible deployment

e Low-latency line-of-sight (LoS) propagation link,
context-awareness networks

>MEC-enabled UAV systems provide computional resources while
reducing the transmission latency to loTDs

2Pawani Porambage et al. “Survey on Multi-Access Edge Computing for Internet of Things Realization”. In: |EEE
Communications Surveys & Tutorials 20.4 (2018), pp. 2961-2991. por: 10.1109/COMST.2018.2849509.
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Introduction - Current work on MEC-enabled UAV systems

[4.5.6] Energy efficiency in multiple timeslots (time-evolving)
while considering the stability of system queues (not delay)

[7.8.9] | atency minimization without queueing consideration
(not queuing delay, time-evolving in stochastic environments)

4Jiao Zhang et al. “Stochastic Computation Offloading and Trajectory Scheduling for UAV-Assisted Mobile Edge
Computing”. In: IEEE Internet of Things Journal 6.2 (2019), pp. 3688-3699. DOI: 10.1109/JI0T.2018.2890133.
5Zheyuan Yang, Suzhi Bi, and Ying-Jun Angela Zhang. “Dynamic Trajectory and Offloading Control of
UAV-enabled MEC under User Mobility”. In: 2021 |EEE International Conference on Communications Workshops
(ICC Workshops). 2021, pp. 1-6. DOI: 10.1109/ICCWorkshops50388.2021.9473504.

SLinh T. Hoang et al. “Joint Uplink and Downlink Resource Allocation for UAV-enabled MEC Networks under
User Mobility”. In: 2022 IEEE International Conference on Communications Workshops (ICC Workshops). 2022,
pp. 1059-1064. DOI: 10.1109/ICCWorkshops53468.2022.9814687.

7Zhe Yu et al. “Joint Task Offloading and Resource Allocation in UAV-Enabled Mobile Edge Computing”. In
IEEE Internet of Things Journal 7.4 (2020), pp. 3147-3159. DoOI: 10.1109/JI0T.2020.2965898.

8Ali A. Nasir. “Latency Optimization of UAV-Enabled MEC System for Virtual Reality Applications Under Rician
Fading Channels”. In: |[EEE Wireless Communications Letters 10.8 (2021), pp. 1633-1637. por:
10.1109/LWC.2021.3075762.

gYing Liu, Junjie Yan, and Xiaohui Zhao. “Deep Reinforcement Learning Based Latency Minimization for Mobile
Edge Computing With Virtualization in Maritime UAV Communication Network”. In: |EEE Transactions on
Vehicular Technology 71.4 (2022), pp. 4225-4236. DoI: 10.1109/TVT.2022.3141799.
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Introduction - Our proposal

Problem: Optimizing the offloading decision
. A MEC-assisted UAV server
and resource allocation for

e The energy efficiency while considering 0 g
M=

the low latency requirements problem

in MEC enabled UAV systems /,t"/
. ] SN
e Holistic latency: queuing delay + L7 ’: |
i i ,EJ 1 \‘IJ
transmission delay (( L ‘=
Solution: ((%T (@)

e Deep Reinforcement Learning

(DRL)-based approach for sub-optimal
solutions

N loT devices (loTDs)

= = « wireless link
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System Model




System model

Remote computation
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A MEC-enabled UAV server, N loTDs, T sequential timeslots TSs:
i={1,2,...N},t={0,1,..., T — 1}

’ Params ‘ Optimization vars
Arrival packets Af Offloading decision x!
Local queue Q;(t) Local computation frequency £}
Remote buffer at UAV for i L;(t) Offloading tasks b}
Local computation tasks af Remote CPU frequency for i fut,i

6/12



Problem Formulation




Problem formulation

loTD | UAV | Offloading |
Pit,L = /‘i(fft)3 ‘ PZ; = t')3 ‘ Pito

Power

ZI/TZ ¢IZPIL+wlszO+w2ZPUI

t ieMp ieM;
L Y7 Y, (Q6)+Li(1)/A110] | fixed At
atency =73 (Qi(t) + Li(t) + xfA) . A = AiAT
t

e 1,1 : adjustable, balanced weight factors

o ME M:!: local or offloading-loTDs set

10)ohn DC Little and Stephen C Graves. “Little’s law”. In: Building intuition. Springer, 2008, pp. 81-100.
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System power minimization s.t the latency constraint problem

. N
mn Pi=YT) <¢1 2iems Pi 01 it Pio + P2 2im Pfj,i)
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D =173, (Qit) + Li(t) + xfA) < Y™ Vi t,
xf €{0,1}, Vi,t,
0 < <7, 2] < Qi(t),Yx7 =0,t,
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->Exponential complexity

e Long-term avarage, evolving multiple timeslots

e Mixed-integer non-linear-programming (MINLP)
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Lyapunov-guided DRL-based Online
Optimization




Lyapunov-guided DRL-based online optimization

e Lyapunov framework: decouple the problem into per-slot

deterministic problems!?

e DRL optimization: deal with MINLP
e lterative: a deep neural network (DNN) to predict offloading
decisions, then convex optimization to allocate resources
e Actor-critic loop: obtain the best state-action pairs, gradually

improve the model accuracy
Je--=-=-==-=== (1) Actor Module = = = #f= = = = = = (2) Critic Module = = = — =]
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Michael J Neely. “Stochastic network optimization with application to communication and queueing systems”.

In: Synthesis Lectures on Communication Networks 3.1 (2010), pp. 1-211.
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Numerical Results




Simulation Settings

Parameter settings:

e Hyay = 150m with horizontal distance between UAV and
loTDs r = [10,100]m

e Model the air-to-gound propagation channel with LoS

probability as in'?

Comparative methods:

e Lyapunov-guided DRL online optimization: Learning

e Exhausted approach, which searches through all possible
oploading decisions: Exhausted

2Akram Al-Hourani, Sithamparanathan Kandeepan, and Simon Lardner. “Optimal LAP Altitude for Maximum
Coverage”. In: IEEE Wireless Communications Letters 3.6 (2014), pp. 569-572. poI: 10.1109/LWC.2014.2342736.
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Simulation Results
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e Suboptimal solution: Learning gradually approachs

Exhausted’s performance
e Short execution time: Execution time with number of loTDs:

e Learning: {0.017,0.018,0.019,0.019}
e Exhausted: {0.037,0.067,0.436,3.53}
e Scalability characteristic for high-density networks
e Execution time: {0.017,0.018,0.019,0.019} with
N = {5,10,12,15}
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Conclusions




Conclusions

e Considered the latency constraint requirement with power
efficiency in MEC-enabled UAV systems

e Proposed the Lyapunov-guided DRL online optimization,
which provides the suboptimal solution in short execution time
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Thank you.
Any Questions are welcomed.
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