

Throughput Analysis of Incremental Redundancy Hybrid ARQ for FSO-based Satellite Systems

Hoang D. Le¹, Vuong V. Mai², Chuyen T. Nguyen³, and Anh T. Pham¹

¹Computer and Communications Lab., The University of Aizu, Japan
 ²Photonics Systems Research Laboratory, KAIST, Korea
 ³School of Electronics and Telecommunications, Hanoi University of Science and Technology, Vietnam

Hawaii-USA, Sept. 25, 2019

Outline

\circ Introduction

- Free Space Optical (FSO)-based Satellite Systems
- Challenges in FSO-based Satellite Systems
- Solutions and Motivation

System Proposals

- IR-HARQ and Burst Transmission Design
- Channel-sate Modeling
- Burst Loss Model
- Throughput Analysis

Numerical Results

• Conclusions

Free Space Optical (FSO)-based Satellite

FSO-based satellite communications:

- Availability of vast unlicensed bandwidth (using laser to provide ~ Gbps of data rate)
- Flexible deployment and wide coverage area (could be deployed for rural and remote areas)

Challenge in FSO-based Satellite System

• One of the main challenging issues in the design of FSO-based satellite systems is the <u>uncertainty of atmospheric channels</u>

VTC-fall 2019

Error Control Solutions

- Automatic repeat request (ARQ) and forward error correction (FEC) are the most popular error-control protocols [1]-[2].
 - DLR group, "Channel Modelling for Free-Space Optical Inter-HAP Links Using Adaptive ARQ Transmission," SPIE 2014
 Eiji Okamoto, et al., "A Markov-Based Satellite-to-Ground Optical Channel Model and Its Effective Coding Scheme," IEICE Trans. Com., 2012

• For FSO-based satellite:

- ARQ may **not efficient** in high-latency networks when channel becomes noisy (**requires many retransmissions**)
- FEC always **requires redundancy** and may **reduce system throughput** (more redundancy, more reliable, but reduce throughput)

The solution (combine FEC and ARQ): retransmit only redundancy for erroneous frame and combine with previous received ones to correct that frame

What's Our Goal?

- We want to see how IR-HARQ can be applied for FSO-based satellite communication systems
 - Uncertainty of atmospheric channels
 - High-latency of satellite systems
 - High speed connection: different from RF communications
- Our goals:
 - We study the **design of IR-HARQ protocol** for **FSO burst transmission** in satellite communication system
 - Find the **optimal setting** (provided turbulence conditions and connection speed) **for system performance** (throughput)

IR-HARQ Protocol

IR-HARQ protocol

- <u>Rate-compatible puncturing convolutional code (RCPC)</u>: a data frame encoded by a mother code (low code rate, e.g., 1/3), is punctured into the coded bits with higher code rates for transmissions
- <u>Sliding window ARQ</u>: using selective-repeat mechanism to retransmit the coded bits and combine all the previous received ones to correct the frame
- Example: persistent level of HARQ = 3

Burst Transmission Design

- Long channel coherence time → design the burst transmission at the PHY layer
 - Coherence time of FSO channels is typically 1 to 10ms or longer [3].

[3]. I. Djordjevic, "Adaptive modulation and coding for free-space optical channels," IEEE JOCN 2010

• For example: 1Gbps FSO transmission takes $1\mu s$ to transmit one frame with size of 1080 bits, and it may cover at least 1000 frames in a coherence time

Burst transmission

- <u>Control part</u>: for the detection of burst at receiver
- *Payload part*: contains multiple frames deigned by a window size of IR-HARQ

Example of Burst Transmission

To analyze system throughput, we need to build the burst loss model

- Consider the time-varying behavior of turbulence fading and <u>channel</u> <u>modeling for burst transmission</u>
 - Gamma-gamma (GG) turbulence fading channel is assumed [3]

[4]. D. R. Kolev, et al., (NICT), "Received-Power Fluctuation Analysis for LEO Satellite-to-Ground Laser Links," IEEE JOCN 2017

Channel-State Modeling

• Modelling the burst transmission over turbulence fading channel

 \rightarrow The transmission of burst and its feedback signal is assumed to be within a fixed-time slot of channel states whose average duration is chosen to be shorter than <u>the fading coherence time</u>

 γ : signal-to-noise ratio (SNR) threshold

$$\gamma_{1} \qquad \gamma_{2} \qquad \gamma_{3} \qquad \gamma_{4} \qquad \gamma_{i} \qquad \gamma_{i+1} \qquad \gamma_{K} \qquad \gamma_{K+1}$$

$$\xrightarrow{\text{Outage}} \qquad \xrightarrow{\tau} \qquad \xrightarrow$$

Level crossing rate at a given γ_i

Channel coherence time

Channel-State Transition

• Finite-state Markov Chain to model the behavior of channel

 $q_{K,K}$

K

 $q_{i,j}$: transition probability from *i*-th state to *j*-th state

Given $q_{i,j}$, we can find the steady-state probability, Pr_i , at *i*-th state

$$q_{i,j} = \begin{cases} 0 & \text{if } |i-j| \ge 2, \\ \frac{N(\gamma_{i+1})T_{\text{burst}}}{\Pr_i} & \text{if } j = i+1 \text{ and } i = 1, \dots, K-1, \\ \frac{N(\gamma_i)T_{\text{burst}}}{\Pr_i} & \text{if } j = i-1 \text{ and } i = 2, \dots, K, \\ 1 - p_{i,i+1} - p_{i,i-1} & \text{if } i = j \text{ and } 0 < i < K, \\ 1 - p_{0,1} & \text{if } i = j = 0, \\ 1 - p_{K,K-1} & \text{if } i = j = K. \end{cases}$$

We use the channel model to develop the burst loss model for analyzing the system throughput

September 25, 2019

VTC-fall 2019

Burst Loss Model

• We develop the data burst loss model to derive the system throughput

• Loss state (L-state): burst loss happens (i.e., either the header is corrupted or one of frames is lost) with a probability,

$$BLP_i = 1 - (1 - \overline{BER}_{H,i})^{N_C} \times (1 - \overline{FLR}_i)^{n_f}$$

- $\overline{\text{BER}}_{H,i}$: average bit error rate of the control part at channel-state *i*-th
- $\overline{\text{FLR}}_i$: average frame loss rate at channel-state *i*-th
- Non-loss state (N-state): none of frames in burst are lost

• Transition probabilities

•
$$p_{\text{LN}} = \frac{\sum_{i=1}^{K} \sum_{j=1}^{K} \Pr_{i} \text{BLP}_{i} q_{i,j} (1 - \text{BLP}_{j})}{\sum_{i=1}^{K} \Pr_{i} \text{BLP}_{i}}$$

•
$$p_{\text{NL}} = \frac{\sum_{i=1}^{K} \sum_{j=1}^{K} \Pr_{i} (1 - \text{BLP}_{i}) q_{i,j} \text{BLP}_{j}}{\sum_{i=1}^{K} \Pr_{i} (1 - \text{BLP}_{i})}$$

- Pr_{*i*}: the steady-state probability at channel-state *i*-th
- q_{ij} : the transition probability from *i*-th to *j*-th channel-state

System Throughput Analysis (1)

- We consider an infinite sequence of transmitting bursts which is divided into cycles
 - Each cycle starts by a burst in L-state and ended by the burst just before another L-state one

• Throughput is defined as the ratio between the average no. of successful received frames in a cycle and average cycle duration

System Throughput Analysis (2)

- System Throughput: $\overline{\eta} = \frac{E_f \times N_f}{(1 + E_b) \times T_{\text{slot}}}$
 - E_b : average no. of bursts in N-state of a cycle

$$E_b = p_{\mathrm{L},\mathrm{N}} \times \sum_{k=1}^{\infty} k \times p_{\mathrm{N},\mathrm{L}}(k) + 0 \times p_{\mathrm{L},\mathrm{L}}$$

• E_f : average no. of successful frames in a cycle

$$E_{f} = \frac{E_{b} \times n_{f}}{\overline{M}} + \sum_{i=1}^{n_{f}-1} i \binom{n_{f}-1}{i} p_{s}^{i} (1-p_{s})^{n_{f}-1-i} \left(1-\overline{\mathrm{BER}}_{\mathrm{H}}\right)^{N_{\mathrm{C}}}$$

- p_s : probability that a frame is correctable (received successfully)
- \overline{M} : average number of transmissions for a frame

September 25, 2019

VTC-fall 2019

Numerical Results

- We consider a FSO transmission from low-earth orbit (LEO) satellite to ground station
- The system parameters

Name	Value
Frame size	$N_f = 1500$ bytes
Burst-control part size	$N_{\rm C} = 40$ bits
Persistent level of HARQ	M = 3
Data rate	$R_b = 1$ Gbps
Satellite Altitude	H = 610 km
Zenith angle	$\xi = 60^o$
Wind speed	$v_{\rm wind} = 21 \ {\rm m/s}$
RCPC family code	(1, 4/5, 1/2) (1, 1/2, 1/3)
Optical wavelength	$\lambda = 1.55 \mu\mathrm{m}$

Burst Size Selections

• Given $v_{wind} = 21 \text{ m/s:}$ (a) $C_M = 1/2 \text{ and (b)} C_M = 1/3$

Throughput vs. received SNR

IR-HARQ outperforms pure sliding window ARQ in high error rate environment

Burst size = 4000 frames, H = 610 km, $v_{wind} = 21$ m/s

Conclusions

- The paper studied the design and analyzed the throughput performance of IR-HARQ protocol for FSO burst transmission in satellite communication systems.
- Numerical results
 - showed the impact of atmospheric turbulence on throughput performance.
 - confirmed the effectiveness of using IR-HARQ.
 - supported the optimal selection of burst size to maximize the system throughput.

• Future work

• Consider a comprehensive design by exploring the queuing model and adaptive modulation and coding (AMC) schemes.

Thank you for your listening!

(Attendance supported by Telecommunications Advancement Foundation)

The Telecommunications Advancement Foundation