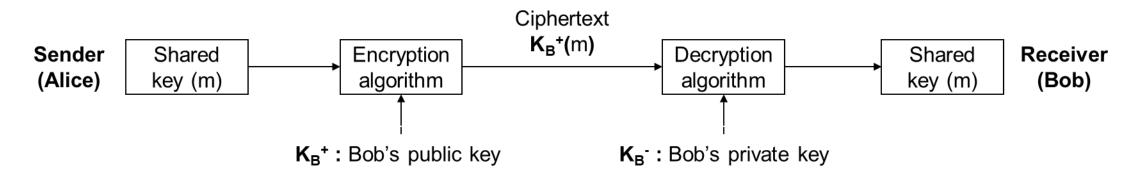


A Proposal of Satellite-based FSO/QKD System for Multiple Wireless Users

Minh Q. Vu, Hoang D. Le, and Anh T. Pham

The University of Aizu


Contents

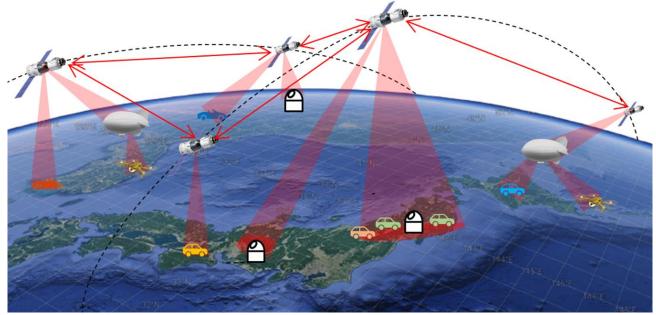
- 1. Quantum Key Distribution (QKD)
- 2. Satellite-based QKD Systems
- 3. Our System Implementation
- 4. Performance Analysis
- 5. Results
- 6. Conclusions

Quantum Key Distribution (QKD)

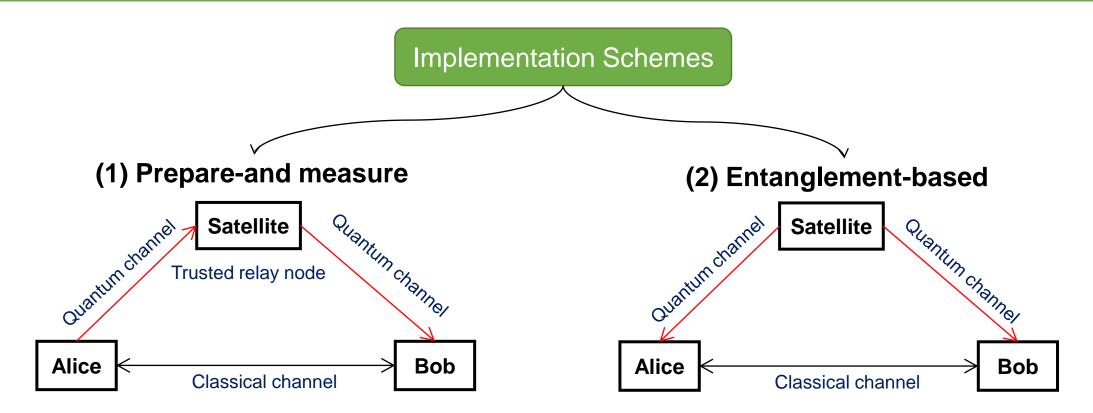
In network security, how can two users share secret keys in a secure manner?

o Conventional approach is *Public-Key Cryptography (PKC)*

• The security of PKC relies on mathematical complexity


 \rightarrow Becomes vulnerable to advances in computational technologies (e.g., quantum computing, DNA computing)

• To solve this issue, a promising solution is *Quantum Key Distribution (QKD)*


- It is based on the laws of physics to distribute secret keys between two legitimate users
- · Possible unconditional security can be achieved

Satellite-based QKD Systems: Overview

- QKD can be implemented over <u>optical fiber</u> and <u>free-space optics (FSO)</u> (terrestrial or satellite)
- Conventional QKD systems mainly focus on
 - Optical fiber: for fixed users, inflexibility
 - Terrestrial FSO: limited distance (several kilometers)
- \rightarrow Difficult to support global QKD services, large-scale networks, especially for mobile users (e.g., autonomous cars, UAVs)
- To tackle those issues, <u>FSO-based</u> <u>satellite</u> has been recently considered for QKD systems thanks to flexible deployment and wide coverage area

Satellite-based QKD Systems: Implementation

More than one phase is needed to transmit key from Alice to Bob \rightarrow complexity and inefficiency

Satellite does not need to be a trusted node

Entanglement-based scheme is more efficient and more secure as Alice and Bob can settle secret keys without the involvement of the satellite

Entanglement-based Satellite QKD: Literature Survey

• There are two main approaches to implement entanglement-based QKD

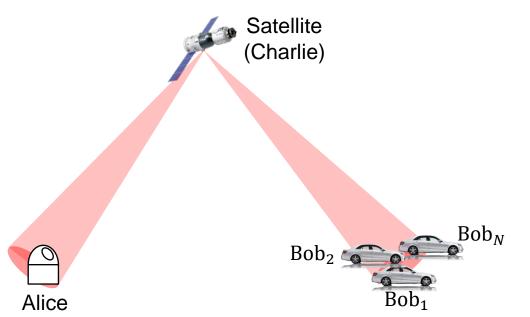
- <u>Discrete-variable (DV)</u>: Entangled photon-pairs are sent and then detected by single-photon detectors
- <u>Continuous-variable (CV)</u>: Two-mode entangled states created from laser are sent and then detected by coherent detectors
- Both DV and CV-QKD have recently studied for satellite-based QKD
 - [1], [2] considered DV-QKD for entanglement-based satellite QKD
 - \rightarrow Low key rate and incompatibility with standard optical communication technologies
 - [3], [4] addressed CV-QKD for entanglement-based satellite QKD
 - → Complexity (require a sophisticated phase stabilized local light for coherent detection) And all of them just considered a pair of users (between Alice and Bob)

• A simpler approach that is compatible with standard communication technologies and can support multiple users is needed

[1] J. Yin, Y.-H. Li, L. Shengkai et al., "Entanglement-based secure quantum cryptography over 1,120 kilometres," Nature, vol. 582, pp. 1–5, Jun. 2020.

[2] S.-K. Liao, W.-Q. Cai, J. Handsteiner et al., "Satellite-relayed intercontinental quantum network," Phys. Rev. Lett., vol. 120, Jan. 2018, Art. no. 030501.

[3] N. Hosseinidehaj, Z. Babar, R. Malaney et al., "Satellite-based continuous-variable quantum communications: State-of-the-art and a predictive outlook," IEEE Commun. Surv. & Tut., vol. 21, no. 1, pp. 881–919, 2019.


[4] D. Dequal, L. Trigo Vidarte, V. Roman Rodriguez et al., "Feasibility of satellite-to-ground continuous-variable quantum key distribution," npj Quantum Inf., vol. 7, no. 1, Jan. 2021, Art. no. 3.

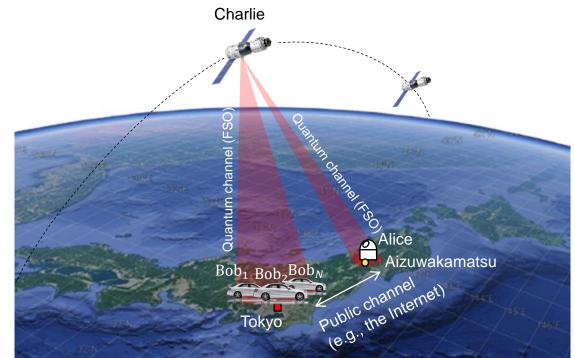
Goals

- 1. Design an entanglement-based satellite QKD system with simple, low-cost implementation, and compatibility with standard communication technologies for multiple users
 - Applying SIM/BPSK FSO system with dual-threshold (DT)/direct detection (DD) receivers based on BBM92 QKD protocol [5]

2. Investigate performance results

o Total key-creation rate, the number of users

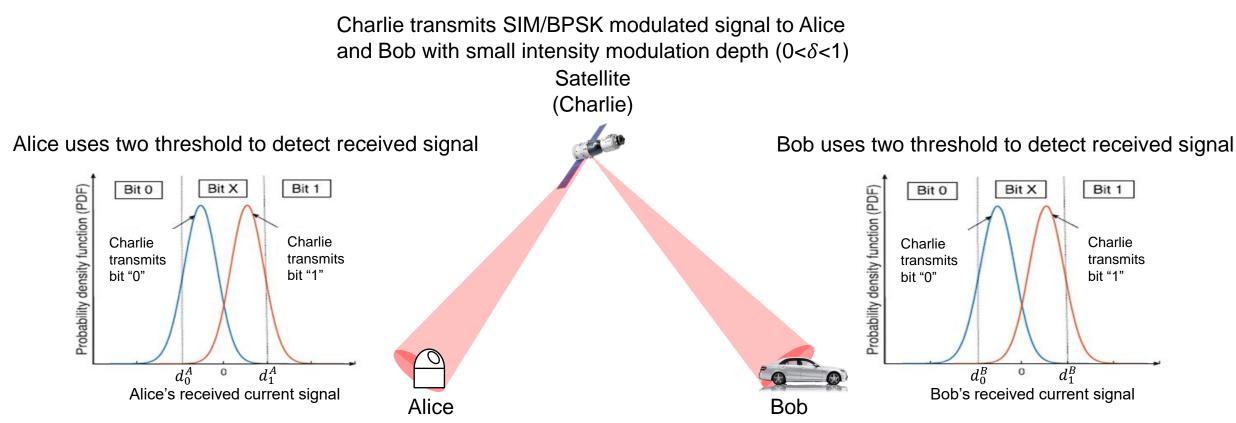
[5] M. Q. Vu, H. D. Le and A. T. Pham, "Entanglement-based Satellite FSO/QKD System using Dual-Threshold/Direct Detection," ICC 2022 - IEEE International Conference on Communications, 2022, pp. 3245-3250


Our System Implementation

• Considered system scenario

- Charlie transmits signal simultaneously to both Alice and Bob <u>via FSO channel</u>
- Alice and Bob detect received signal and then confirm via public channel to <u>create the</u> <u>secret key</u>
- Eavesdropers (Eve) are <u>within the satellite's</u> <u>beam footprint</u> trying to <u>collect secret keys</u>

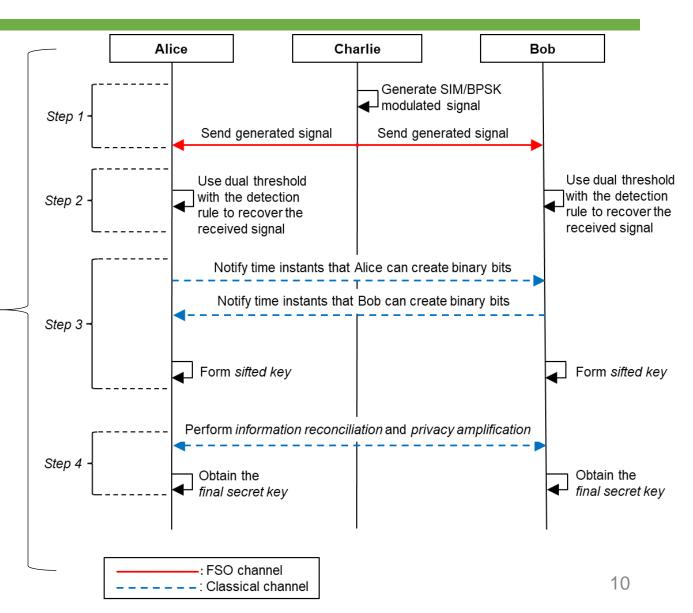
• Protocol implementation


 Satellite CV-QKD using non-coherent detection (realized by <u>dual-threshold/direct</u> <u>detection</u> (DT/DD) receivers) for the entanglement-based scheme based on <u>BBM92 protocol [5]</u>

Satellite-based QKD system for multiple users

Protocol Implementation: BBM92 with DT/DD

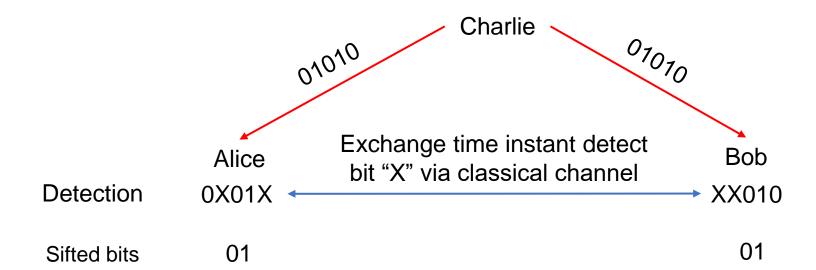
The idea of the protocol proposal: mimic the key transmitting/decoding of BBM92 protocol [6]
Implement on standard FSO system with non-coherent detection

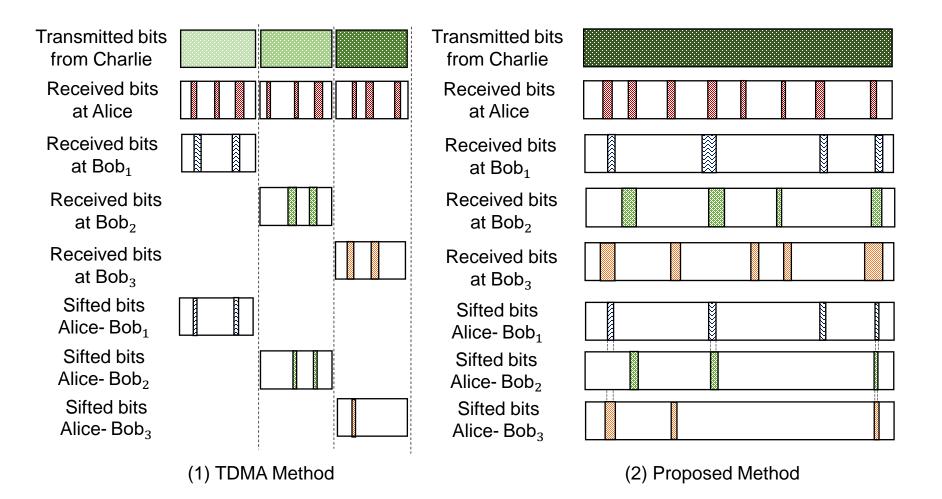


[6] C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell's theorem," Phys. Rev. Lett., vol. 68, pp. 557–559, Feb. 1992.

Protocol Implementation: Flowchart

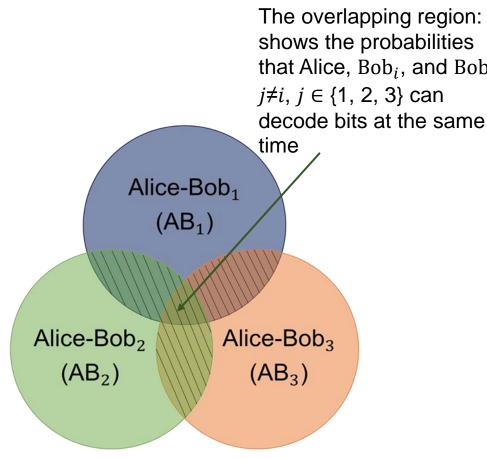
Our protocol includes 4 steps


The key issue for simple and lowcost implementation comes from <u>the</u> <u>non-coherent detection (realized by</u> <u>dual-threshold/direct detection)</u>


Protocol Implementation: An Example

$_{\odot}$ An example of the proposed protocol

Satellite (Charlie)			Alice			Bob			Sifted bite
Time	Bit	Signal	Time	Threshold	Bit	Time	Threshold	Bit	Sifted bits
t_0	0	i_0	t_0	d_0^A	0	t_0	d_0^B	Х	discarded
t_2	1	i_1	t_2	d_1^A	X	t_2	d_1^B	X	discarded
t_3	0	i_0	t_3	d_0^A	0	t_3	d_0^B	0	0
t_4	1	i_1	t_4	d_1^A	1	t_4	d_1^B	1	1
t_5	0	i_0	t_5	d_0^A	X	t_5	d_0^B	0	discarded



Satellite-based FSO/QKD for Multiple Wireless Users

Time Division Multiplexing Access (TDMA) vs. the proposed method for key distribution with the number of users at Bob's site = 3

Performance Analysis (1)

Visualization for the relationship of sift probabilities between Alice and Bob_i , $i \in \{1, 2, 3\}$

Sift Probability:

that Alice, Bob_i , and Bob_j , \circ In TDMA system:

$$P_{AB_i}^{\text{sift}} = P_{AB_i}(0,0) + P_{AB_i}(0,1) + P_{AB_i}(1,0) + P_{AB_i}(1,1)$$

 $P_{AB_i}(x, y)$ with $(x, y) \in \{0, 1\}$: the probability that Alice's detected bit "x" coincides with Bob's detected bit "y"

In the proposed system:

 $P_{AB_i}^{\text{sift}-\text{excl}} = P_{AB_i}^{\text{sift}} - \varepsilon P_{AB_i}^{\text{excl}}$

 $P_{AB_i}^{\text{excl}}$: the mutual sift probability with other users Bob_j $P_{AB_i}^{\text{excl}}$

$$= \sum_{j \neq i, 1 \le j \le N} P(AB_i \cap AB_j) + \sum_{j_1 \neq j_2 \neq i, 1 \le j_1 \le j_2 \le N} P(AB_i \cap AB_{j_1} \cap AB_{j_2})$$
$$+ \dots + (-1)^{N+1} P\left(\bigcap_{i=1}^N AB_i\right)$$

 ε : the exclusion ratio coefficient

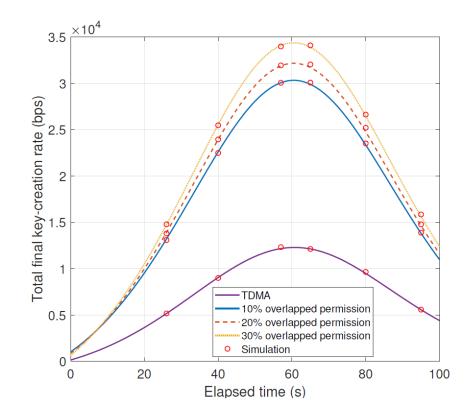
Performance Analysis (2)

Final-key creation rate:

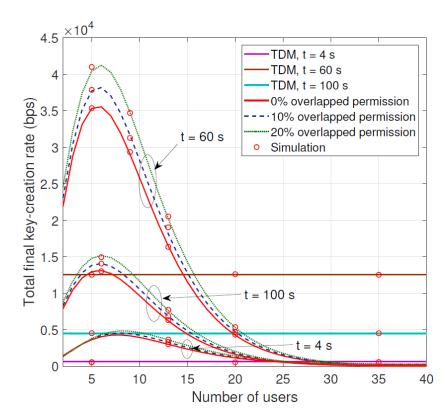
- \circ We assume that there are two eavesdroppers (Eve₁ and Eve₂) who perform unauthorized receiver attacks near Alice's and Bob's sites, respectively
- After sharing the sifted key between Alice and Bob and performing error correction, Alice and Bob:
 - Estimate the information leaked to eavesdroppers
 - Exclude it through privacy amplification to obtain the final key
- $_{\odot}\,$ Final-key creation rate can be derived as

$$R_i^f = R_i^s \{ \alpha I(A; B_i) - \max[I(A; E_1), I(B_i; E_2), I(E_1; E_2)] \}$$

$$R_i^s$$
: the sifted-key rate
In TDMA system: $R_i^s = P_{AB_i}^{sift} \frac{R_b}{N}$
In the proposed system: $R_i^s = P_{AB_i}^{sift-excl} R_b$


 R_b : the system's bit rate

 α : error correction efficiency in post-processing procedures


 $I(X; Y), X \in \{A, B_i, E_1\}, Y \in \{B_i, E_1, E_2\}$: the amount of information shared between X and Y

Results

Results are analyzed under the impact of <u>the effects of channel loss, atmospheric turbulence-</u> induced fading, and receiver noises

Total final key-creation rate vs. the elapsed time with the number of users =3: Proposed method vs. TDMA method

Total final key-creation rate vs. the number of users (N): Proposed method vs. TDMA method

Conclusions

- This paper proposes satellite-based CV-QKD using DT/DD to distribute secret keys to multiple users
- We analyzed the system performance regarding sift probability and total final-key creation rates for legitimate users
- The numerical results are given under the effects of channel loss, atmospheric turbulence-induced fading, and receiver noises
- The correctness of derived formulas was verified by Monte-Carlo simulations

Thank you!

Name	Symbol	Value					
LEO Satellite (Charlie)							
Wavelength	λ	1550 nm					
Bit rate	R_{b}	1 Gbps					
Altitude	$H_{\rm C}$	550 km					
Divergence angle	θ_C	50 μ rad					
Transmitted power	P	30 dBm					
FSO Channel							
Sun's spectral irradiance							
from above the Earth	$\Omega_{\rm v}$	$0.2 \text{ kW/m}^2 \cdot \mu \text{m}$					
Wind speed	w	21 m/s					
The refractive index structure							
parameter at the ground level	$C_{n}^{2}(0)$	$10^{-15} \mathrm{m}^{-2/3}$					
Visibility	V	30 km					
Alice/Bob/Eve							
Altitude	$H_{\rm U}$	2 m					
Aperture radius	a_{U}	5 cm					
Optical bandwidth	B_0	250 GHz					
Responsivity	R_e	0.9 A/W					
Effective noise bandwidth	Δf	0.5 GHz					
Temperature	T	298 K					
Load resistor	$R_{\rm L}$	1 kΩ					
Amplifier noise figure	F_{n}	2					

TABLE 3: System Parameters