Master's Research Plan Seminar

Resource Allocation for Optical IRS-Assisted Multi-UAVs Networks

Student: DANG Dinh Khanh – m5282002

Supervisor: Prof. Anh T. PHAM

Aizuwakamatsu, Dec. 5 2024

Outline of Presentation

I. Introduction

II. Problem Statement and Motivation

III. Literature Reviews and Its Limitation

IV. Research Goal and Plan Timeline

1. The FSO-based HAP networks

In recent years, the success of various projects involving HAPs (e.g., SoftBank's Sunglider in Japan) has opened a new chapter for Aerospace integrated network architecture to support a wide coverage.

High-altitude platforms (HAPs)

- Airships, aircraft.
- Altitude: 17-25 km
- Coverage with diameter 200 km
- Provide connection to remote/rural/emergency areas

☐ Using RF communication: hundredsMbps and up to a few Gbps

Internet from space by high altitude platform (HAP)

Need <u>higher data rates</u> to support billions of users for the future 6G network.

1. The FSO-based HAP networks

❖ Free Space Optical (FSO) communications

- Using infrared frequency bands (200-400 THz) to transmit data in free space.
- High-speed connection (Gbps and even Tbps)
- Free-license bandwidth

The FSO based HAP can support ultra-high speed data rate and wide coverage.

1. The FSO-based HAP networks

- **☐** FSO-based HAP network applications:
 - Internet of Vehicles (IoV)
 - Internet of Medical Things (IoMT)
 - Internet of Senses (IoS)
 - Internet of Remote Things (IoRT)
 - Vehicle to Everything (V2X)
 - Smart Grid IoT,...

☐ However, using HAP as a relay can lead to power consumption and hardware complexity

The FSO-based HAP-Assisted IoV network

1. IRS-assisted FSO-based HAP networks

Recently, many works focus on optical intelligent reflecting surface (OIRS) as an alternative solution of conventional relay networks.

❖ Optical Intelligent Reflecting Surface (OIRS):

- An artificial surface, made of mirrors and nearly passive elements.
- IRS controls and manipulates the impinging waves into the expected directions.

Advantages

- Low power consumption.
- Low complexity and cost-effectiveness
- Extend coverage and avoid blockage

Therefore, IRS can be used for the FSO-based HAP network to support IoV applications.

FSO-based HAP-Assisted Multi-UAVs with IRS

System description:

- 1. Sources: multiple laser sources putting in the top of buildings
- 2. Relay: one OIRS mounted HAP
- 3. Destinations: multiple UAVs for temporary event, shipping, rescue, data collection service.

Advantages

- Ubiquitous connections
- Wide coverage
- Ultra-high data rate
- Flexible deployment
 - Wide range of applications

Limited OIRS Resources

The limited OIRS size mounted in HAP restricts the number of OIRS elements, creating critical issues in sharing these elements among multiple UAVs.

Resource Allocation

for OIRS supporting multiple UAVs

Given:

- Different time-varying channels
- Maintain targeted Quality of Service (QoS) among all UAVs

2. Problem Statement

Time-varying Channel Condition:

- ☐ Atmospheric turbulence: random phenomenon temperature and pressure of atmospheric cause the scintillation effect.
- □ Atmospheric attenuation: the gas molecules and aerosol particles in atmospheric cause the absorbing and scattering phenomenon.
- □ Pointing error: misalignment between the center of FSO beam footprint and UAV detector.

For example:

- UAV1 is in *good channel condition*, need fewer OIRS elements.
- UAV2 is in *very bad channel condition*, need more OIRS elements.

It's important to consider the *dynamic channel conditions* among UAVs to *allocate OIRS elements* for *maintaining a targeted QoS*

3. Literature Reviews and Its Limitation

□ Terrestrial Networks

Many studies have well investigated the OIRS to enhance line-of-sight communication, physical-layer security, and resource allocation for both single user and multiple users [1]-[3].

However, these schemes *allocate OIRS equally* to multiple users and is *not straight-forward* to apply in space with *dynamic channel conditions*.

3. Literature Reviews and Its Limitation

□ Space Networks

In space networks, many studies have focused on using IRS to avoid bad weather conditions or blockage connections in the context of a single user [4]-[6].

Reference	Summary
[4]-2022	Analyze the performance of a reconfigurable intelligent surface (RIS)-assisted unmanned aerial vehicle (UAV) wireless
	system that is affected by mixture-gamma small-scale fading, stochastic disorientation and misalignment, as well as
	transceivers hardware imperfections.
	=> Do not consider resource allocation
[5]-2023	This paper examines hybrid FSO-RF relay systems in satellite-terrestrial networks, considering weather effects and
	propose design three relay schemes for varying weather using HAPS and RIS-assisted UAVs.
	=> Can't support in term of multiple users simultaneously
[6]-2024	Introduce multi-hop fully FSO-backhaul link, connecting ground stations through RIS-embedded UAVs.
	=> Do not consider the multiple users and time-varying channel

Resource allocation for ORIS supporting *multiple users* considering different *time-varying channel conditions and QoS* of all UAVs is not available.

4. Research Goal and Plan Timeline

Research Goal

I want to propose a <u>resource allocation mechanism based on Space and Interlacing Division</u> considering (1) the different channel conditions, (2) fixed OIRS elements, and the (3) Quality of Services (QoS) (e.g Outage Probability/Bit error rate) among UAVs.

Calculate the required number of OIRS elements (n_i) for each UAVs.

Determine the coordinates of each OIRS element (x_i, y_i) in OIRS panel.

$$Throughput_{i}, \tau_{i} = f\left(n_{i}, x_{j}, y_{k}\right)$$
 where
$$\max_{(n_{i}, x_{j}, y_{k})} \left(Total_Throughput\right) = \sum_{i=1}^{N} \tau(i),$$
 s.t $QoS_{targeted}$, fixed OIRS size = $M_{X} \times M_{Y}$

s.t
$$QoS_{\text{targeted}}$$
, fixed OIRS size = $M_X \times M_Y$

where $i \in \{1, 2, ..., N\}$, where N is number of UAVs, $j \in \{1, 2, ..., M_x\}$, where M_x is number of OIRS in X coordinate, $k \in \{1, 2, ..., M_Y\}$, where M_Y is number of OIRS in Y coordinate.

4. Research Goal and Plan Timeline

THANK YOU FOR LISTENING!

Reference

- [1] H. Ajam, M. Najafi, V. Jamali, B. Schmauss and R. Schober, "Modeling and Design of IRS-Assisted Multilink FSO Systems," in IEEE Transactions on Communications, vol. 70, no. 5, pp. 3333-3349, May 2022, doi: 10.1109/TCOMM.2022.3163767
- [2] W. Fang et al., "Reconfigurable Intelligent Surface Assisted Free Space Optical Information and Power Transfer," in IEEE Internet of Things Journal, vol. 11, no. 18, pp. 30260-30277, 15 Sept.15, 2024, doi: 10.1109/JIOT.2024.3409815.
- [3] S. Aboagye, A. R. Ndjiongue, T. M. N. Ngatched, O. A. Dobre and H. V. Poor, "RIS-Assisted Visible Light Communication Systems: A Tutorial," in IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 251-288, Firstquarter 2023, doi: 10.1109/COMST.2022.3225859.
- [4] A. -A. A. Boulogeorgos, A. Alexiou and M. D. Renzo, "Outage Performance Analysis of RIS-Assisted UAV Wireless Systems Under Disorientation and Misalignment," in IEEE Transactions on Vehicular Technology, vol. 71, no. 10, pp. 10712-10728, Oct. 2022, doi: 10.1109/TVT.2022.3187050.
- [5] X. Li, Y. Li, X. Song, L. Shao and H. Li, "RIS Assisted UAV for Weather-Dependent Satellite Terrestrial Integrated Network With Hybrid FSO/RF Systems," in IEEE Photonics Journal, vol. 15, no. 5, pp. 1-17, Oct. 2023, Art no. 7304217, doi: 10.1109/JPHOT.2023.3314664.
- [6] Y. Ata, A. M. Vegni and M. -S. Alouini, "RIS-Embedded UAVs Communications for Multi-Hop Fully-FSO Backhaul Links in 6G Networks," in IEEE Transactions on Vehicular Technology, vol. 73, no. 10, pp. 14143-14158, Oct. 2024, doi: 10.1109/TVT.2024.3414850.