Master's research plan seminar

Structural Topic Modeling and Sentiment Analysis of X (Twitter) Data to Quantitatively Appraise Global Public Opinion

MGUYEN Viet Hoa m5281033

Supervisor: Prof. LE Doan Hoang University of Aizu

2024 Jul 23th

Content

- 1 2 3 4 5
- Introduction
- Existing Technique and Its Changlenges
- Ideas for Improvement and Proposed Solution
- Model Framework
- Case Study and Initial Result

The Glosbal Use of Twitter:

- X (Twitter) has become a bustling global forum where individuals, communities, and even nations share their thoughts, opinions, and concerns.
- This real-time stream of consciousness presents an unprecedented opportunity to understand of global public opinion, or in other words, "WHAT DO PEOPLE THINK?"

Reseach to Quantify Public Opinion

• Researchers and organizations have recognized the value of Twitter data and have employed various techniques to analyze and quantify public sentiment.

Research Approaches for Quantify Public Opinion and Sentiment Analysis

Rule-based Systems

Model rely on handcrafted rules that utilize lexicons, dictionary and other linguistic features

Machine Learningbased Systems

Utilize algorithms that learn to classify sentiment from labeled training data

Hybrid Systems

Combine the strengths of both rule-based and machine learning approaches

1. Lexicon-Based Sentiment Analysis [1]:

- Mechanism: Relies on pre-defined dictionaries of words and their associated sentiment scores (e.g., positive, negative). Tweets are analyzed by matching words against these dictionaries and aggregating their scores.
- Advantages: Simple, fast, and requires no training data.
- Limitations: Struggles with context, sarcasm, negation, and evolving language.

[1] S. K. Tripathi et al., "Sentiment Analysis of Twitter Data," IJET, 2020.

2. Supervised Machine Learning [2]:

- Mechanism: Algorithms (e.g., Naive Bayes, Support Vector Machines) learn to classify tweet sentiment from labeled training data.
- Advantages: Can capture complex patterns and adapt to new language if retrained.
- Limitations: Requires substantial labeled data, which is costly and time-consuming to obtain. May overfit to training data and not generalize well to unseen examples.

[2] Xia, H., Yang, Y., Pan, X., & An, W. "Sentiment analysis for online reviews using conditional random fields and support vector machines," 2020.

3. Topic Modeling [3]:

- Mechanism: Statistical models like Latent Dirichlet Allocation (LDA) or Non-negative Matrix Factorization (NMF) identify latent topics within a corpus of tweets.
- Advantages: Uncovers underlying themes and discussions, can handle large-scale data.
- Limitations: Often assumes topic independence, doesn't directly incorporate sentiment analysis, and topic interpretation can be subjective. 1 opics

[3] J. Boyd-Graber, Y. Hu, and D. Mimno, "Applications of Topic Models," Foundations and Trends in Information Retrieval, vol. 11, no. 2-3, pp. 143-296, 2017.

Image adapted from: "Yoga-Veganism: Correlation Mining of Twitter Health Data," 2019.

4. Hybrid Approach [5]:

- Mechanism: Combine multiple techniques (e.g., lexicon-based sentiment analysis with topic modeling, topic modeling and ABSA) to leverage their strengths.
- Advantages: Provides a more deeper analysis of opinions than general sentiment analysis.
- Limitations:
 - Focus on specific domains (e.g., product reviews, hotel feedback) or smaller datasets. • Often focus on either technique separately. Missing the opportunity to gain deeper
 - insights from their combined application.
 - While those has been applied to public opinion research, it is often used in conjunction with surveys or other data sources, not the meta data.
 - Face challenges related to data quality (e.g., noise, sarcasm), aspect identification, and sentiment classification accuracy.

Ideas for Improvement

- Design and implement algorithms specifically tailored to address and handle the massive volume of social media data
- Work with specific data with noise, slang, and figurative language.
- Real-time monitoring and analysis to track public opinion trends
- Go beyond binary sentiment classification and explore nuanced sentiments towards multiple aspects of a topic

Propose Solution

=> integrates the two model of **Structural Topic Modeling** (STM) and Aspect-Based Sentiment Analysis (ABSA) for analyzing public opinion on X (Twitter)

Basic Ideas of Structural Topic Modeling (STM)

- **Definition**: A method to discover hidden topics within large sets of text [5].
 - **Example:** Imagine reading thousands of datas and automatically finding recurring themes like "economy," "politics," or "entertainment."
- Its advantages:
 - Allows discover latent topics within large volumes of unstructured text data
 - Design specially to incorporate with metadata.
 - Allows for correlations between topics, for example, how do topics correlate with specific events or variables?

[5] Roberts, M. E., Stewart, B. M., & Tingley, D. (2019). "stm: An R Package for Structural Topic Models." Journal of Statistical Software, 91(2), 1-40. DOI: 10.18637/iss.v091.i02

Image adapted from: He, L., Han, D., Zhou, X., & Qu, Z. (2020). "The Voice of Drug Consumers Online Textual Review Analysis Using Structural Topic Model."

Basic Ideas of Aspect-Based Sentiment Analysis (ABSA)

There are 4 level of Sentiments Analysis

- <u>Level 1</u>: Basic Sentiment Analysis: Determines the overall polarity of a text (positive, negative, or neutral).
- Level 2: Categorization of Sentiment: Identifies specific emotions like joy, anger, or sadness in the text.
- Level 3: Sentiment by Topic: Analyzes sentiment towards specific topics or entities mentioned in the text.
- Level 4: Aspect-Based Sentiment Analysis: Goes further by identifying specific aspects or features of those topics/entities and determining the sentiment expressed towards each aspect.

Nazir, A., Rao, Y., Wu, L., & Sun, L. "Issues and Challenges of Aspect-Based Sentiment Analysis: A Comprehensive Survey." IEEE Transactions on Affective Computing, 2022.

Image adapted from: "An example of aspect-based sentiment analysis (ABSA)," ResearchGate.

Key Improvements and Expected Research Goals

What is my novelty by combining STM and ABSA compared to previous work?

- First to apply this hybrid method on Twitter data.
- Developing tailored algorithms and techniques to handle the unique characteristics of Twitter data, capable of handling the decent volume of Twitter data.
- Providing a more comprehensive and nuanced analysis. STM will uncover the main themes and discussions, while ABSA will delve into the specific aspects.
- Analyzing sentiment towards multiple aspects simultaneously. Going beyond the basic positive/negative sentiment classification often limited in previous work.
- Real-time analysis, e.g., how people's thoughts change over time.

Model Framework

Case Study and Initial Result

Case Selection: #TruongMyLan Financial Crime

Trương Mỹ Lan Case Overview

- Date: April 11, 2024
- Person: Trương Mỹ Lan, Vietnamese billionaire
- Allegations: Embezzlement and fraud
- Investigation: Financial irregularities found
- Outcome: Death sentence
- Public Reaction:
 - Shock and disappointment
 - Anger and calls for justice
 - Concerns about Vietnam's economy
 - Discussions on Vietnam's corporate governance
 - Extensive media coverage

Expected Result of STM

Topic 1: fraud, scandal, billionaire Topic 2: investment, stocks, markets Topic 3: transparency, corruption, governance Topic 4: allegations, misconduct, lawsuit Topic 5: finance, regulation, economy Topic 6: trust, accountability, ethics Topic 7: public, opinion, sentiment Topic 8: investigation, charges, trial Topic 9: media, coverage, news Topic 10: shares, trading, stockholders Topic 11: assets, wealth, networth Topic 12: financial, statements, audit Topic 13: tax, evasion, penalty Topic 14: legal, proceedings, court Topic 15: corporate, governance, policy Topic 16: transparency, disclosures, filings Topic 17: whistleblower, leak, information Topic 18: public, reaction, outrage Topic 19: economic, impact, downturn Topic 20: fraud, scheme, investigation

Expected Result of ABSA

Topic 1: fraud, scandal, billionaire Topic 2: investment, stocks, markets Topic 3: transparency, corruption, governance Topic 4: allegations, misconduct, lawsuit Topic 5: finance, regulation, economy Topic 6: trust, accountability, ethics Topic 7: public, opinion, sentiment Topic 8: investigation, charges, trial Topic 9: media, coverage, news Topic 10: shares, trading, stockholders Topic 11: assets, wealth, networth Topic 12: financial, statements, audit Topic 13: tax, evasion, penalty Topic 14: legal, proceedings, court Topic 15: corporate, governance, policy Topic 16: transparency, disclosures, filings Topic 17: whistleblower, leak, information Topic 18: public, reaction, outrage Topic 19: economic, impact, downturn Topic 20: fraud, scheme, investigation

- Green: Positive Sentiment
- Red: Negative Sentiment
- Orange: Mixed Sentiment

Expected Result of Correlation Analysis

• Topics that are closely related tend to cluster together

- Interpretation:
 - Identifying Key Relationships
 - Understanding Public Opinion
 - Insights

• T1 (fraud, scandal, billionaire) == T3 (transparency, corruption, governance) & T6 (trust, accountability, ethics) => suggesting discussions about transparency and ethics in the context of financial scandals. • T2 (investment, stocks, markets) == T5 (finance, regulation, economy) & T18 (public, reaction, outrage)

indicating connections between market investments, financial regulations, and public reactions =>

Research Plan Timeline

TAKING COURSES AND LEARN NECESSARY KNOWLEGDE

Thank you.