

National Institute of Information and Communications Technology

Research Issues toward the Next Generation of Mobile Networks in NICT

Kien Nguyen, Kentaro Ishizu, and Fumihide Kojima 1 December 2015, Aizu

Outline

Introduction

Multipath TCP

SDN in 5G

User-centric in 5G

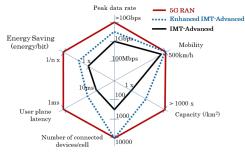
Conclusion

The Fifth Generation of Mobile Network

Source: Association of Radio Industries and Businesses (ARIB) whitepaper

5G by 2020

- Enabling new applications/industries
- Empowering new user experience
- Reasonable cost

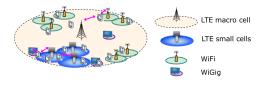

Multipath TCP

SDN in 5G

User-centric in 5G

Conclusion

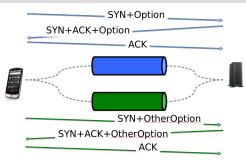
5G KPIs



- Novel requirements of Key Performance Indicators (KPIs)
- User-centric requirement

Common In 5G

- A 5G device commonly has multiple wireless interfaces
 - Wi-Fi, LTE, mmWave, etc.
- Heterogeneous networks (i.e., a 5G within the coverages of several base stations)
 - Same or different technologies
- Potentially providing sufficient networking resources
 - The KPIs are promisingly achievable by various wireless technologies


Requirements

- Flexible methods to access and share 5G accessible networks
- Efficient use of 5G resources
- User centric design along with system centric design

Link Aggregation using Multipath TCP

MPTCP

- Standardized by IETF
- Concurrent TCP subflows via different end-to-end paths
- Three way handshaking (SYNC, SYNC/ACK, ACK) with the MP_CAPABLE option
- Flexibly adding/deleting paths
- Available on Linux kernel, Android phone, Apple iPhone

Multipath TCP

SDN in 5G

User-centric in 5G

Conclusion

Example of combining MPTCP in Wi-Fi

Application							
	MPTCP						
TCP Subflow	TCP Subflow	TCP Subflow					
IP1	IP1 IP2						
Wirele	ess Virtua	lization					
MAC1 MAC2 MAC3							
РНҮ							

$WiPoMu^1$

- Require the minimum change on Wi-Fi client
- Software-based cross-layer solution
- Building upon Wi-Fi virtualization, Policy Routing, and MPTCP

¹Kien Nguyen et al. "A Cross-layer Approach for Improving WiFi Performance," IEEE IWCMC 2014

Multipath TCP

SDN in 5G

User-centric in 5G

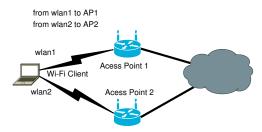
Conclusion

Wi-Fi Virtualization

Multiple logical Wi-Fi interfaces on a physical one

- Managed by a middle layer between MAC and IP
- Transparent with the physical layer
- First available on Windows, then popular in Linux and others

Multipath TCP

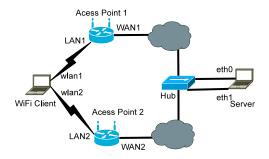

SDN in 5G

User-centric in 5G

Conclusion

Policy Routing

IP src matching # IP dst matching


Source Based Routing

- Keeping the correct operation of traffic flows in WiPoMu
- Implementation using iproute
- Packets with different IP sources following different paths

Prototyping and Evaluation in Indoor Testbed

- A WiPoMu client connects to a server via two paths over Internet
- The delay and bandwidth parameters are emulated on Linux machine
- For the real home network, the server is the iperf at multipath-tcp.org

Experimental Setup

Network parameters

Device	Interface	Address
WiFi Client	wlan1	192.168.11.3/24
	wlan2	192.168.1.100/24
Server	eth0	10.0.11.100/24
	eth1	10.0.1.100/24
AP1	LAN1	192.168.11.1
	WAN1	10.0.11.1
AP2	LAN2	192.168.1.1
	WAN2	10.0.1.1

Intro	duct	ion
mure	Junci	.1011

Multipath TCP

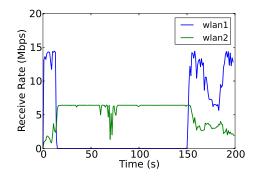
SDN in 5G

User-centric in 5G

Conclusion

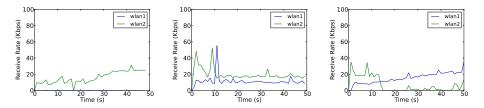
Improving backhaul throughput

Three sets of experiment


- Three sets of experiments with different network settings
- The left-most one is WiPoMu; The middle and the righ-most ones are the normal Wi-Fi
- The aggregation of bandwidth has been shown

	0				

Seamless handover



- Failures happen on the path1, the traffic is automatically switched
- Seamless handover or soft handover has been achieved

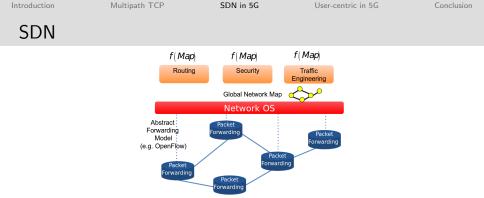
WiPoMu in real home networks

Running over Internet

- The left figure shows the case of using Wi-Fi
- The middle figure shows WiPoMu's aggregation
- The right figure shows WiPoMu's soft handover

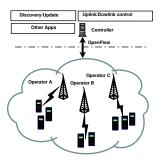
5G Access Network

- Proliferation of devices (i.e., densification)
- Various (evolving, new) applications
- Novel QoS/QoE requirements
 - Iow latency
 - high throughput
 - high reliability


5G Access Network

- Proliferation of devices (i.e., densification)
- Various (evolving, new) applications
- Novel QoS/QoE requirements
 - Iow latency
 - high throughput
 - high reliability

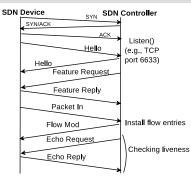
Software Defined Networking (SDN) is a fast evolving technology toward the requirements


- A Network Operating System (NOS) with a global view of network controls data planes via OpenFlow protocol
 - Relying on a decouple of data and control planes
- SDN provides an easier way to manage and automate networks
- SDN is successfully evolved and deployed in wired networks (e.g., Google's WANs)

Conclusion

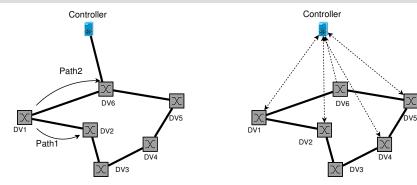
Software Defined Wireless Access Network

SDWAN


- There are many proposals of SDWANs
 - Aiming to cope the scalability, QoS requirements
 - The SDN devices could be mobile devices, L2/L3 switches, etc.
- The major bottleneck: the control (i.e., OpenFlow) channel

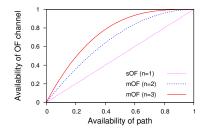
Conclusion

The standard OpenFlow in SDWAN


sOF

- Single path communication required TCP/IP connections
- May cause serious problems under failure
 - Fail standalone mode
 - Fail secure mode

OpenFlow traffic in SDWAN



- Diverse physical deployments for OpenFlow traffic
- Inband, out-of-band
- Or mix that is not well defined in the standard

Multipath for Robustness

Availability

- Let 's denote the average availability of the path *i* as A_i with the mean of uptime, downtime m_i^{up} , $m_i^{down} A_i = \frac{m_i^{up}}{m_i^{up} + m_i^{down}}$
- If the OpenFlow traffic is on multiple paths, the availability becomes $A_{OF} = 1 \prod_{i=1}^{n} (1 A_i)$
- Potentially increasing throughput

Available multipath technologies

- Layer 2
 - 802.1AX
 - TRILL (Transparent Interconnection of Lots of Links)
 - SPB (Shortest Path Bridging)
- Layer 3: ECMP (Equal Cost Multiple Paths)

Available multipath technologies

- Layer 2
 - 802.1AX
 - TRILL (Transparent Interconnection of Lots of Links)
 - SPB (Shortest Path Bridging)
- Layer 3: ECMP (Equal Cost Multiple Paths)

They are suitable with a part of the SDWANs due to the mix deployment

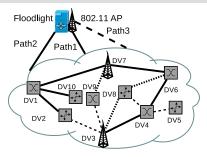
Multipath TCP (reminder)

- A transport layer (e.g., Layer 4) solution
- Overcome the requirements of suitability both for SDWAN and OpenFlow
 - MPTCP works wherever TCP does
- MPTCP is available on popular platforms (e.g., iOS, Android, Linux, etc.)

mOpenFlow²

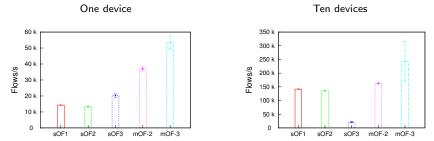
- Initializing connections as MPTCP
 - SYNC, SYNC/ACK, ACK
 - Checking MPTCP-capable option
 - Discovering paths

- Conveying the OpenFlow traffic
 - All or a subset of the available paths
 - One path and other for protection


Enhancing throughput and robustness of the OpenFlow channel

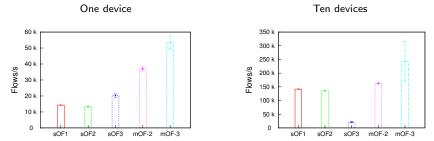
² Kien Nguyen et al. 'A Scalable and Robust OpenFlow Channel for Software Defined Wireless Access Networks', IEEE VTC-Fall 2015

Experimental Setup


Emulated SDWAN

- Floodlight controller and cbench-generated devices
- Three paths are available between the SDN devices and controller
 - Path1, Path2: wired connections
 - Path3: wireless
- Using cbench (i.e., a SDN benchmarking tool; throughput mode and latency mode)

Scalability Evaluation

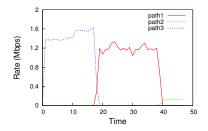

Scalability

- Using the throughput mode of cbench
- Comparing throughput of the standard channel (sOF) and mOF in one device and ten device scenarios



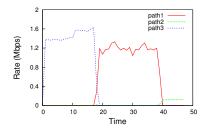
Scalability Evaluation

Scalability


- Using the throughput mode of cbench
- Comparing throughput of the standard channel (sOF) and mOF in one device and ten device scenarios
- mOpenFlow outperforms the standard one

Conclusion

Robustness against failure


Path failure in one device scenario

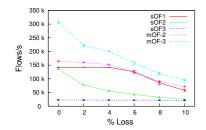
- Using the latency mode of cbench
- Observing the variation of traffic over three paths that experience failures

Robustness against failure

Path failure in one device scenario

- Using the latency mode of cbench
- Observing the variation of traffic over three paths that experience failures
- mOpenFlow successfully achieves soft switchover

	0				


Multipath TCP

SDN in 5G

User-centric in 5G

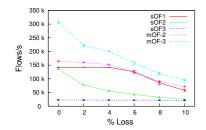
Conclusion

Robustness in lossy environment

Loss resilience

Using the throughput mode but introducing loss to paths

	0				


Multipath TCP

SDN in 5G

User-centric in 5G

Conclusion

Robustness in lossy environment

Loss resilience

- Using the throughput mode but introducing loss to paths
- mOpenFlow is more loss-resilient than the standard channel

Multipath TCP

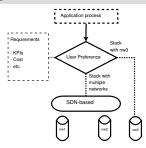
SDN in 5G

User-centric in 5G

Conclusion

User centric

User centric design


- Diversification of 5G users
- Users actively involve in accessing and sharing Internet connection
 - Capable of selecting the suitable networks
 - Capable of sharing the connections

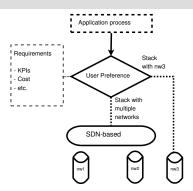
Conclusion

A user-centric design

User-centric Software Defined platform $(USD)^3$

- Introduce an user-centric module (i.e., user preference)
 - Interface with each application process based on user preference
 - Drive application processes to multiple networking stacks
 - Select suitable interface based on user expectation
- Software-based (i.e., virtualziation)

³Kien Nguyen et al. "USD: a User-centric Software Defined Platform for 5G Mobile Devices," EAI SDWNCT 2015


Multipath TCP

SDN in 5G

User-centric in 5G

Conclusion

- Each networking stack uses either virtual or physical wireless interfaces
- Efficiently utilizing networking resources
 - SDN-based approach to exploit multiple networks
 - Bypassing the disadvantages of state-of-the-art SDN by using an extra interface

ï	n	+	r	0	Ы	u	\sim	÷	i	~	n	
ŝ		I L	5	0	u	u	C	Ľ	5	U		

User-centric function

Requiring interactions with users

Protactively or reactively based on users' background

- Support users with different technical background
 - Transparent with novice users
 - Fully controllable with expert users

- The simplest form of this module
 - Own decision by expert users

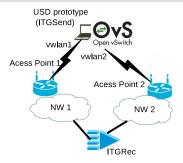
Intro	duct	ion
mure	Junci	.1011

Implementation challenge

- Interacting and isolating the application process
 - Leveraging network namespace (i.e., a form of network virtualization)
 - Creating networking stack, each of which interacts with user-preferred applications

Exploiting multiple wireless networks

- Using SDN-based approach for flexible forwarding
- An SDN switch associates several wireless interfaces


- An extra wireless interface
 - Forming a networking stack for application
 - Providing an interface for remote control component (e.g., SDN controllers)

Conclusion

Experimental Setup

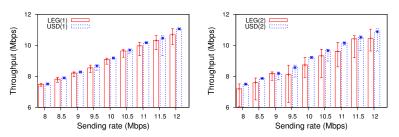
Prototype USD

- On Ubuntu with Open vSwitch 2.3.1 (i.e., SDN switch)
 - Associating several virtual Wi-Fi interfaces
- ITG-Send sends UDP traffic to ITG-Recv through the network one (NW1) and network two (NW2)
 - Comparing to the legacy Ubuntu stack (LEG)

Throughput comparison

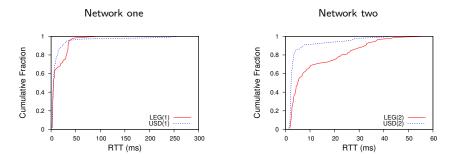
Тx

The sending rate increases, the achievable throughput increases with both LEG and USD



Throughput comparison

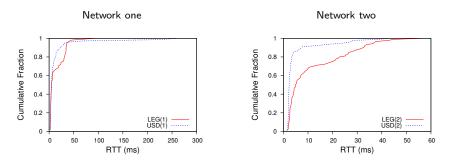
 $\mathsf{T}\mathsf{x}$


- The sending rate increases, the achievable throughput increases with both LEG and USD
- USD and LEG have comparable performance

Intro	duct	ion
muo	auci	1011

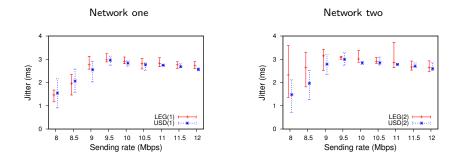
RTT comparison

RTT


The similar observation is seen in the RTT values

I	r	r	t	r	0	d	u	С	t	0	n	
2	۰.	۰.	۲	۰.	~	u	u	~	۲	~		

RTT comparison


RTT

- The similar observation is seen in the RTT values
- The additional processing in USD has negligible effect on RTT

Jitter comparison

Jitter

USD has a slightly better performance than LEG

Introduction	
muouuction	

Conclusion

Brief Introduction of several 5G researches and developments in NICT

MPTCP as a solution for link/path aggregations

Extending SDN for flexible control and management in 5G wireless

A design and implementation of user-centric platform (i.e., USD)

Thank You & Questions?

Kien Nguyen kienng@nict.go.jp

