An Introduction of Performance Evaluation using ns-2 Simulator

Kien Nguyen

National Institute of Information and Communications Technology, Japan

Aizu, December 2015

Outline

1 Introduction

- 2 The network simulator ns-2
- 3 Simulate Wireless Sensor Networks in ns-2

4 Conclusion

Network Performance Evaluation

- Network performance refers measures of service quality of a network as seen by the customer.
 - Or key criterion (i.e., performance metrics) in the design and/or use of networked systems
- Performance evaluation is a constructive process to compare a number of alternative designs to find the best design

Performance Evaluation Techniques

Suppose you devise a great protocol. How do you show that it is great?

Experiments

- In a test-bed network or an operational network
- e.g., put all routers together and let people use them

Analytical Modeling

- Use mathematical notions and models
- e.g., model routers using graph theory

Simulation

- Use programming to represent routers
- e.g., C++, ns-2

Why Simulation?

Comparison of techniques

	Analytical Modeling	Simulation	Experiments
Accuracy	Moderate	Moderate	Various
Cost	Small	Medium	High
Time required	Small	Medium	High

Pros and Cons

	Analytical Modeling	Simulation	Experiments
Pros	Insight	Easy(Cheap)	Realistic
		Used for verification	
Cons	Need to make assumption	Not much insight	Expensive
			Sometime not possible

When

- Real-system not available, is complex/costly or dangerous
- Quickly evaluate design alternatives (e.g., different system configurations)
- Evaluate complex functions for which closed form formulas or numerical techniques not available

Simulation Overview

- Platform: hardware, software, or hybrid
- 2 Developer: commercial or in-house
- Source code: open or close
- 9 Paradigm: Time-dependent/non-time-dependent; Time-driven/event-driven
- Dimension of simulation performance (Scalability, Fidelity, Execution Speed, etc.)
- Physical layer: Matlab, Labview, etc.
- Network layer: ns-2, Opnet, Qualnet

Simulation Overview

Three Simulation Main Steps

Design and Implementation

- Things to simulate
- Assumptions
- Performance measure
- Code Implementation

② Simulation

- Network Configuration Phase
- Simulation Phase

Result Compilation

- Debugging and Tracing
- Compute performance measures

Outline

1 Introduction

2 The network simulator ns-2

3 Simulate Wireless Sensor Networks in ns-2

4 Conclusion

ns-2 stands for network simulator version 2

• http://www.isi.edu/nsnam/ns/

ns-2

- is a discrete event simulator for networking research
- works at packet level
- provides support to simulate protocols such as TCP, UDP, FTP, HTTP and DSR, etc.
- simulate wired and wireless network

Ns-2 Architecture

- C++: Internal mechanism
 - Network protocol stack written in C++
- OTcl: User interface
 - Tcl (Tool Command Language) used for specifying scenarios and events
- TclCL: Connecting C++ to OTcl

Installation

Access ns-2 website

Download link http://www.isi.edu/nsnam/ns/ns-build.html

② Get all in one packet (e.g., ns-allinone-2.35.tar.gz)

- ns2, Tcl/Tk, OTcl, TclCL
- nam, Zlib, Xgraph

- Follow the instruction
- ns-2 is designed for Unix
- For windows, Cygwin required

Simple scenario

#Create a simulator object
set ns [new Simulator]

#Open trace file
set f [open out.tr w]
\$ns trace-all \$f

#Create two nodes set n0 [\$ns node] set n1 [\$ns node]

#Create a duplex link between the nodes
\$ns duplex-link \$n0 \$n1 1Mb 10ms DropTail

Simple scenario

#Create a simulator object
set ns [new Simulator]

```
#Open trace file
set f [open out.tr w]
$ns trace-all $f
```

```
#Create two nodes
set n0 [$ns node]
set n1 [$ns node]
```

#Create a duplex link between the nodes \$ns duplex-link \$n0 \$n1 1Mb 10ms DropTail

Simple scenario

#Create a simulator object
set ns [new Simulator]

```
#Open trace file
set f [open out.tr w]
$ns trace-all $f
```

```
#Create two nodes
set n0 [$ns node]
set n1 [$ns node]
```

#Create a duplex link between the nodes
\$ns duplex-link \$n0 \$n1 1Mb 10ms DropTail

simple.tcl

```
#Create a simulator object
set ns [new Simulator]
#Open trace file
set f [open out.tr w]
$ns trace-all $f
#Define a 'finish' procedure
proc finish {} {
       global ns
       $ns flush-trace
       exit 0
}
#Create two nodes
set n0 [$ns node]
set n1 [$ns node]
#Create a duplex link between the nodes
$ns duplex-link $n0 $n1 1Mb 10ms DropTail
#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"
#Run the simulation
$ns run
```


#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
\$ns attach-agent \$n0 \$udp0

#Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
\$cbr0 set packetSize_ 500
\$cbr0 set interval_ 0.005
\$cbr0 attach-agent \$udp0

#Connect the traffic source with the traffic sink \$ns connect \$udp0 \$null0

#Schedule events for the CBR agent \$ns at 0.5 "\$cbr0 start"

\$ns at 4.5 "\$cbr0 stop'


```
#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
```

#Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
\$cbr0 set packetSize_ 500
\$cbr0 set interval_ 0.005
\$cbr0 attach-agent \$udp0

```
#Connect the traffic source with the traffic sink
$ns connect $udp0 $null0
```

```
#Schedule events for the CBR agent
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
```



```
#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
```

#Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
\$cbr0 set packetSize_ 500
\$cbr0 set interval_ 0.005
\$cbr0 attach-agent \$udp0

```
#Connect the traffic source with the traffic sink
$ns connect $udp0 $null0
```

```
#Schedule events for the CBR agent
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
```



```
#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
```

#Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
\$cbr0 set packetSize_ 500
\$cbr0 set interval_ 0.005
\$cbr0 attach-agent \$udp0

```
#Connect the traffic source with the traffic sink
$ns connect $udp0 $null0
```

```
#Schedule events for the CBR agent
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
```

Trace analysis

{enque(+),deque(-),receive(r),drop(d)}

Outline

1 Introduction

2) The network simulator ns-2

Simulate Wireless Sensor Networks in ns-2

4 Conclusion

Wireless Sensor Network

- Form Networks of Wireless Sensors (WSNs)
- Limited resources: memory, energy, bandwidth
- Long lifetime requirements: months to tens of years
- Must meet the applications' QoS

- The role of medium access control (MAC)
 - Controls when and how each node can transmit in the wireless channel

Why do we need efficient MACs?

- Wireless channel is a shared medium
- Sensor node has limited capabilities

Energy efficient MAC protocols, which guarantee QoS parameters such as latency, throughput, etc., are vital

- The role of medium access control (MAC)
 - Controls when and how each node can transmit in the wireless channel

Why do we need efficient MACs?

- Wireless channel is a shared medium
- Sensor node has limited capabilities

Energy efficient MAC protocols, which guarantee QoS parameters such as latency, throughput, etc., are vital

Common on Power Saving MAC Protocol

Duty cycle: the percent of time a node is active

Classification of duty cycling MAC

- Synchronous protocols:
 - Single-hop protocols (e.g., S-MAC, D-MAC)
 - Multi-hop protocols (e.g., R-MAC, AM-MAC, DW-MAC)
- Asynchronous protocols:
 - Sender-initiated protocols (e.g., B-MAC, X-MAC, C-MAC)
 - Receiver-initiated protocols (e.g., RI-MAC, PW-MAC)

Common on Power Saving MAC Protocol

Duty cycle: the percent of time a node is active

Classification of duty cycling MAC

- Synchronous protocols:
 - Single-hop protocols (e.g., S-MAC, D-MAC)
 - Multi-hop protocols (e.g., R-MAC, AM-MAC, DW-MAC)
- Asynchronous protocols:
 - Sender-initiated protocols (e.g., B-MAC, X-MAC, C-MAC)
 - Receiver-initiated protocols (e.g., RI-MAC, PW-MAC)

Background

Tx_Range: Transmission Range; CS_Range: Carrier Sensing Range

- Broadcast nature: a node can "overhear" the content of a packet transmitting within its transmission range
- Carrier sensing: a node can sense the channel busy when there exist a data transmission within its carrier sensing range
- "Listen before talk" to avoide collision (i.e., use control packets request-to-send (RTS), clear-to-send (CTS))

Design MAC²

Objectives

- High energy efficiency
- Low latency
- High throughput
- Effectively delivery packets
- Efficient under a wide range of traffic loads
- Example of application: sensing event centric

MAC²

MAC²: Multi-hop Adaptive MAC with Packet Concatenation^a

^aKien Nguyen, Ulrich Meis, and Yusheng Ji, "MAC²: A Multi-hop Adaptive MAC Protocol with Packet Concatenation for Sensor Networks," IEICE Trans. on Sys. & Info., No.2, pp. 480-489, Feb. 2012

Design MAC²

Objectives

- High energy efficiency
- Low latency
- High throughput
- Effectively delivery packets
- Efficient under a wide range of traffic loads
- Example of application: sensing event centric

MAC²

MAC²: Multi-hop Adaptive MAC with Packet Concatenation^a

^aKien Nguyen, Ulrich Meis, and Yusheng Ji, "MAC²: A Multi-hop Adaptive MAC Protocol with Packet Concatenation for Sensor Networks," IEICE Trans. on Sys. & Info., No.2, pp. 480-489, Feb. 2012

Adaptive Scheme in Sync Period

- The schemes uses the first bit of SYNC packet as signal (0 = Normal Sync, 1 = Signaling Sync)
- When there is no data, nodes follow an idle cycle

When there is a data packet, nodes follow a busy cycle

Assumption: Signaling SYNCs always win the channel

Packet Concatenation

Why?

- Packet are always queued
- Packet size is small
- All packets are usually addressed to the same sink
 - The major requirement of packet concatenation in our work

How?

- Several packets that share the destination field are concatenated into a super packet
- The length of a super packet (*I_{SP}*) is always less than or equal to the concatenation threshold *I_{TH}*

Data Transmission in a Busy Cycle

Demand Wakeup Transmission

- The manner is original from Demand Wakeup MAC (DW-MAC) ($R_{org} = \frac{T_{Sleep}}{T_{Data}}$)
- MAC² utilizes packet concatenation scheme
- N_i and N_j successfully exchange SCHs. Tⁱ_D will be used to schedule the time wakeup (Tⁱ_S) in the upcoming Sleep period:

$$\frac{T_{S}^{\prime}}{T_{D}^{i}} = \frac{I_{ACK} + I_{TH} + I_{SIFS}}{I_{SCH} + I_{SIFS}} = R_{min}$$

(I_{SP}, I_{ACK}, I_{SCH}, I_{SIFS}: length of Super Packet, ACK, SCH and SIFS)

Numerical Analysis

Bounds of latency in low traffic environments

Lower bound

Upper bound in M sources scenario

MAC² implementation

Modify/create the related files

- e.g., mac2.cc, mac2.h (MAC layer)
- wireless-phy.cc, wireless-phy.h (PHY layer)
- Expected trace information (correctly and efficiently collect performance information)
- Add new object to Makefile
- Compile/Re-compile
- Editor/debugger (command line or Eclipse)

Coding/Debugging takes much time

MAC² implementation

Modify/create the related files

- e.g., mac2.cc, mac2.h (MAC layer)
- wireless-phy.cc, wireless-phy.h (PHY layer)
- Expected trace information (correctly and efficiently collect performance information)
- Add new object to Makefile
- Compile/Re-compile
- Editor/debugger (command line or Eclipse)

Coding/Debugging takes much time

Simulation parameter (ns2parameters.tcl)

Network parameters

Rx Power	22.2 mW	Sleep Power	3 μW
State Transition Power	31.2 mW	Tx Power	31.2 mW
Idle Power	22.2 mW	Transmission Range	250 m
Carrier Sensing Range	550 m	I _{SIFS}	5 ms
Contention Window (CW)	64 ms	I _{DIFS}	10 ms
Retry Limit	5	I _{DATA}	43 ms
I _{ACK}	11 ms	I _{SCH}	14.2 ms
I _{TH}	243 ms	ifq	2500 bytes

Time duration parameters

	T _{Cycle}	T _{Sync}	T _{Data}	T _{Sleep}
DW-MAC/MAC ²	4465 ms	55.2 ms	168 ms	4241.8 ms

Duty cycle

 $DC = (T_{Sync} + T_{Data})/T_{Cycle}$ is 5 % in grid and random network scenarios

Latency Bound (verifying numerical analysis)

- Chain scenario (200 meters between two neighboring nodes is 200 meters) (chain_multihop.tcl)
- The sources send 100 packets to the farthest node at the packet rate one packet/30 seconds (gen_traffic_sink_statistics.tcl)

The simulation results confirm our analysis

Latency Bound (verifying numerical analysis)

- Chain scenario (200 meters between two neighboring nodes is 200 meters) (chain_multihop.tcl)
- The sources send 100 packets to the farthest node at the packet rate one packet/30 seconds (gen_traffic_sink_statistics.tcl)

The simulation results confirm our analysis

Random Correlated Event (RCE) Traffic Model

- An event is generated at a random location (x, y) (e.g., tra_49square200 interval_30 event100 eventradius 500 pktsize28.tcl)
- A node sends one packet if its location is within the circle centered at (*x*, *y*) with radius *SR* (Sensing Range)
- The variation of SR varies the traffic load

Performance in Grid Scenario

- Total 200 events are generated with different values of the inter-event interval (IE) in a grid scenario of (7 × 7)
- Each node is 200 meters apart from its direct neighbors, the sink is at the center
- Each value is averaged over ten runs, the error bars show the 95% confidence interval

- MAC² achieves better delivery ratio than DW-MAC when the traffic is high
- MAC²'s nodes consume less energy than DW-MAC's

Performance in Network Scenario: Energy and PDR

- 100 nodes are randomly deployed in the square 1500 × 1500 meter; the sink node is at the right top corner
- RCE with 200 events; the inter-event interval is randomly between 10 to 30 seconds
- Each value is averaged over 10 runs; the error bars show the 95% confidence interval

MAC² outperforms DW-MAC in all investigated scenarios

Performance in Network Scenario: Energy and PDR

- 100 nodes are randomly deployed in the square 1500 × 1500 meter; the sink node is at the right top corner
- RCE with 200 events; the inter-event interval is randomly between 10 to 30 seconds
- Each value is averaged over 10 runs; the error bars show the 95% confidence interval

MAC² outperforms DW-MAC in all investigated scenarios

Performance in Network Scenario: Throughput and Latency

When SR is larger than 300 meters, the value of DW-MAC's latency is extra large and is not shown

The packet concatenation scheme lets the network in a steady state

Performance in Network Scenario: Throughput and Latency

When SR is larger than 300 meters, the value of DW-MAC's latency is extra large and is not shown

The packet concatenation scheme lets the network in a steady state

AQ-MAC Design

Objectives

- High energy efficiency
- Efficient under a wide range of traffic loads
- Quality of Service (QoS) provisioning
 - A sensor board contains several types of sensors, which may generate different types of data
 - The data needs an effective transmission strategy

AQ-MAC

The protocol is a combination between a receiver-initiated transmission and an adaptive sleeping method

AQ-MAC Design

Objectives

- High energy efficiency
- Efficient under a wide range of traffic loads
- Quality of Service (QoS) provisioning
 - A sensor board contains several types of sensors, which may generate different types of data
 - The data needs an effective transmission strategy

AQ-MAC

The protocol is a combination between a receiver-initiated transmission and an adaptive sleeping method

AQ-MAC: Asynchronous QoS-aware MAC¹

Transmission completed after receive an ack beacon

Receiver-Initiation + QoS Awareness + Packet Concatenation

The transmission manner is original from Receiver-Initiated MAC (RI-MAC)

- Node with pending data listens to the channel waits for an incoming packet
- The sender wastes energy during the waiting time
- The transmission is suitable with time-critical (high priority) traffic
- The low priority (LP) packets are kept in a queue until a high priority (HP) arrives or after a time out value T_h, (T_h = T/h, h: number of hops to the sink)
- The queued packets are concatenated before sending out

¹Kien Nguyen and Yusheng Ji, "Asynchronous MAC Protocol with QoS Awareness in Wireless Sensor Networks," In Proceeding of IEEE GLOBECOM 2012, Dec. 2012

AQ-MAC: Asynchronous QoS-aware MAC¹

Ack beacon invites new incoming data

Receiver-Initiation + QoS Awareness + Packet Concatenation

The transmission manner is original from Receiver-Initiated MAC (RI-MAC)

- Node with pending data listens to the channel waits for an incoming packet
- The sender wastes energy during the waiting time
- The transmission is suitable with time-critical (high priority) traffic
- The low priority (LP) packets are kept in a queue until a high priority (HP) arrives or after a time out value T_h, (T_h = T/h, number of hops to the sink)
- The queued packets are concatenated before sending out

¹Kien Nguyen and Yusheng Ji, "Asynchronous MAC Protocol with QoS Awareness in Wireless Sensor Networks," In Proceeding of IEEE GLOBECOM 2012, Dec. 2012

AQ-MAC Evaluation

In 7 × 7 grid scenario; a sink at the center; 100 events; inter-events (0, 5) seconds

AQ-MAC with HP achieves better than RI-MAC in terms of energy efficiency
 AQ-MAC adapts well with the variation of traffic in the multi-hop network

AQ-MAC Evaluation

In 7 × 7 grid scenario; a sink at the center; 100 events; inter-events (0, 5) seconds

AQ-MAC with HP achieves better than RI-MAC in terms of energy efficiency
 AQ-MAC adapts well with the variation of traffic in the multi-hop network

Outline

Introduction

2 The network simulator ns-2

3 Simulate Wireless Sensor Networks in ns-2

4 Conclusion

Conclusion

- A brief introduction about network performance evaluation
 - Emphasizing on the simulation-based approach
- An overview of the network simulator ns-2
 - Basic information
 - A simple example
- Using ns-2 in a real research work
 - Simulating MAC protocols in wireless sensor networks

References

- ns-2 book by Teerawat Issariyakul
 - And related websites (blog, homepages)
- Network Performance and NS2 by Mohammed M. Kadhum
 - Presented at NETAPPS2010

Thank You & Questions?

Kien Nguyen kienng@nict.go.jp