Information Reconciliation with Polar Code for Satellite QKD Systems

Cuong Nguyen Computer Communications Lab. The University of Aizu

Nov. 13, 2024

Outline

- Part I: An Introduction to Polar Codes
- Part II: Information Reconciliation with Polar Code for Satellite QKD Systems

Overview of Polar Codes

Polar codes are a type of *error-correction code*, firstly introduced in 2009.

• ECC or channel code: error-control methods that add redundancy to the original message so that a certain number of errors can be corrected.

Key Features:

- One of the newest ECC
- Adopt for control channels of the 5G standards
- Provably capacity-approaching performance

Key idea behind polar code: Channel polarization, which is a technique that redistributes channel capacities among various instances of that channel.

This presentation will cover:

- Channel polarization, which is a fundamental concept of polar codes
- Decoding algorithm: Successive Cancellation (SC)

	Control Channels	Data Channels
2G GSM	Convolutional Memory 4 Zero termination	Convolutional Memory 4, 6 Zero termination
3G UMTS	Convolutional Memory 8 Zero termination	Turbo Memory 3 Nonregular π
4G LTE	Convolutional Memory 6 Tail-biting termination	Turbo Memory 3 Contention- free π
5G New Radio	Polar Reliability index- sequence CRC-aided decoding	LDPC Protograph lifting Raptor-like

Table. Overview of Channel Code Used in Wireless Mobile Telecommunications Generations.

Review of Channel Capacity

Channel capacity is the *theoretical maximum information rate* that can be reliably transmitted over a communication channel.

• Reliability: bit-error rate can be made arbitrarily small

X, Y: random variables representing the input and output of the channel. Γ presents the channel.

The channel capacity can be computed as

$$C = \max_{\{\Pr(x)\}} I(X;Y),$$

Example: A binary erasure channel (BEC)

Channel input: $X \in \{0,1\}$ ε : channel erasure probability

Channel output: $Y \in \{0,1,?\}$, where ? is the erasure symbol

Channel capacity of BEC:

$$C = 1 - \varepsilon$$

When $\varepsilon = 0 \Rightarrow C = 1$, the channel is noiseless

When $\varepsilon = 1 \Rightarrow C = 0$, the channel is totally unreliable

13-Nov-24

Channel Polarization: A Basic Transformation

Channel polarization: A technique that <u>redistribute</u> <u>channel capacities among various instance of a channel</u> while *conserving the total capacity of them*.

To achieve the channel polarization, we can apply *channel combining to these channels.*

A basic transformation of channel combining

Take two bits (u_1, u_2) and generate two bits (x_1, x_2) , in which $x_1 = u_1 \oplus u_2$, $x_2 = u_2$

The capacity of the compound channel: $I(U_1, U_2; Y_1, Y_2) = I(X_1, X_2; Y_1, Y_2) = 2I_{\Gamma}$

Remark: The basic transformation does not reduce the channel capacity.

13-Nov-24

Equivalent Channels

Applying some mathematical manipulations, we can rewrite the capacity of the compound channel as

$$2I_{\Gamma} = I(X_1, X_2; Y_1, Y_2)$$

= $I(U_1; Y_1, Y_2) + I(U_2; Y_1, Y_2, U_1)$
Channel Γ^- Channel Γ^+

This implies that the compound channel can be split into two channels with different channel capacities, i.e., Γ^+ and Γ^- .

Equivalent Channels - Example

We can only recover u_1 if we have both y_1 and y_2

$$\Rightarrow \Gamma^{-}: u_{1} \rightarrow \begin{cases} u_{1} \text{ with prob. } (1-\varepsilon)^{2} \\ ? \text{ with prob. } 2\varepsilon - \varepsilon^{2} \end{cases}$$

 $\Rightarrow \Gamma^-$ can be equivalently presented as a BEC with the erasure probability $2\varepsilon - \varepsilon^2$

$$\Gamma^-$$
: BEC($2\varepsilon - \varepsilon^2$)

Equivalent Channels – Example (Cont.)

With u_1 at the output, we can always recover u_2 unless both y_1 and y_2 are erased.

$$\Rightarrow \Gamma^+: u_2 \rightarrow \begin{cases} u_2 \text{ with prob. } 1 - \varepsilon^2 \\ ? \text{ with prob. } \varepsilon^2 \end{cases}$$

 \Rightarrow Γ^+ can be equivalently presented as a BEC with the erasure probability ε^2

 Γ^+ : BEC(ε^2)

Channel Polarization: Remarks

Regarding Γ^- : BEC($2\varepsilon - \varepsilon^2$), we see that $2\varepsilon - \varepsilon^2 \ge \varepsilon$ for $\varepsilon \in [0,1]$

- ⇒ Channel capacity of Γ^- is smaller than that of the original BEC, i.e., $C(\Gamma^-) \leq C(\Gamma)$. Regarding Γ^+ : BEC(ε^2), we see that $\varepsilon^2 \leq \varepsilon$ for $\varepsilon \in [0,1]$
- ⇒ Channel capacity of Γ^+ is larger than that of the original BEC, i.e., $C(\Gamma^+) \ge C(\Gamma)$.

Example: $\varepsilon = 0.5$. We have $C(\Gamma^{-}) = 0.25 \leq C(\Gamma) \leq C(\Gamma^{+}) = 0.75$.

Remark:

- Basic channel transformation generates two new artificial channels.
 - o One of these new channels has a higher capacity.
 - o The other has a lower capacity.

⇒ Further channel polarization can be done by continuing recursively apply the channel combining.

Two-fold of The Basic Transformation

Three-fold of The Basic Transformation

Equivalent Channel Performance

n: Number of channels, ε : BEC erasure probability

12

ECC Based on Channel Polarization

Remark from channel polarization phenomenon

- 1. After applying η -fold of the basic transformation, we have a total of 2^{η} channels.
- 2. When η approaches infinity $(\eta \rightarrow \infty)$,
 - The number of channels with moderate values approaches zero.
 - All the other channels are either perfectly reliable $(I(\Gamma^{...}) \rightarrow 1)$ or totally unreliable $(I(\Gamma^{...}) \rightarrow 0)$.
- 3. The fraction of channels that become perfectly reliable <u>approximately equals the capacity of the</u> <u>channel.</u>

Key ideas of polar codes

- 1. Assign determined values, denoted as frozen bits, on the unreliable channels.
- 2. Assign information bits on the reliable channels.

Remarks

- Very long code length is needed for efficient polarization to happen => Theoretically, polar codes can achieve capacity with a very long code length.
- For finite η , there are intermediate channels which are neither good nor bad. A simple solution is to transmit also frozen bits on these channels, leading to a *rate loss*.

Encoding: Notations & Example

The polar encoding depends on three parameters:

- k: # of information bits
- N: codeword length
- \mathcal{F} : location of the frozen bits

Example: An N = 8 polar code having k = 4, $\mathcal{F} = \{1, 2, 3, 5\}$.

The data is $d = [1 \ 0 \ 0 \ 1]$

Decoding Algorithms: A Big Picture

*CRC: Cyclic Redundancy Check – An error detecting code

Successive Cancellation (SC)

Key idea:

- The decoding is performed sequential. Each bit is decoded one after the other.
- The SC decoding algorithm can be seen as a reverse process of the encoder.
- The algorithm operates on the same circuit of the encoder.
- The input is log likelihood ratio.

Log likelihood Ratio (LLR)

- Let x be the binary-valued random variable taking values on set {0, 1}.
- The LLR of \times measures **the reliability of** x and can be computed as

$$L(x) = \ln \frac{P(x=1)}{P(x=0)}$$

• If
$$P(x = 0) \rightarrow 0$$
, $|L(x)| \rightarrow \infty$

• If
$$P(x = 0) = P(x = 1) = 1/2, |L(x)| \to 0$$

Successive Cancellation (SC)

13-Nov-24

Successive Cancellation (SC): Information Flow

Successive Cancellation List (SCL)

Drawbacks of SC decoding algorithm: It can only work well with a very long codeword, where the polarization effect is extreme.

Key idea to improve:

- Maintain a list of candidate paths, which is built up when the algorithm proceeds.
- Delete the worst paths and keep the maximum number of candidate paths as *L*.

By additionally considering the CRC, the performance of SCL decoding algorithm <u>can be on par with</u> <u>LDPC codes in short and moderate block lengths.</u>

Outline

- Part I: An Introduction to Polar Codes
- Part II: Information Reconciliation with Polar Code for Satellite QKD Systems

Key Reconciliation for Satellite QKD Systems

- Wireless QKD systems using FSO
 - Support wireless/mobile applications, e.g., secure Internet of Vehicles (IoV)
- We focus on key reconciliation step in the post-processing phase
 - KR: attempt to reconcile sifted keys from both sides

• Why is it important:

- The uncertainty of time-varying FSO channel ⇒ Highly fluctuating quantum bit-error rate (QBER)
- Long propagation delay of satellite communication (in order of milliseconds) ⇒
 Increase the latency of the KR.

13-Nov-24

My Previous Work: Blind Reconciliation with LDPC Codes

- Key idea: Alice reveals more information after each decoding attempt until Bob can correct
- This can be done with a special family of LDPC Codes (Protograph LDPC)
- Syndrome-based error estimation is implemented to reduce the number of required communication rounds.

Flow chart of the blind reconciliation method

An Open Issue: KR for Short Blocklength

- An open issue: In some situations, the sifted key lengths are relatively short (~ 1000 bits).
 - Atmospheric loss reduces the arrived photon rates
 - DV-QKD protocols have low repetition rate.
- \Rightarrow It is necessary to have a proper KR design for short block length.

Fig. Sifted key rate versus time of the Micius quantum satellite to the ground station

Possible Solutions: sp-RC-LDPC Code

Possible coding solutions for blind reconciliation: (1) RC-LDPC with shortening and puncturing (sp), (2) protograph RC-LDPC code, and (3) polar code.

- 1. sp-LDPC code design
- Adding random bits to the sifted keys
- These bits are treated as puncturing and shortening bits at Bob's decoder
- When a decoding attempt fails, Alice will disclose more punctured bits to Bob.

Drawbacks: The code rates in the family depends on the fraction of punctured bits, lpha

- If α is high => limit the highest code rate
- If α is small => limit the code range of the family

$$R_{\max}^{\text{LDPC}} := \frac{R_{\text{base}}}{1-\alpha} \ge R \ge \frac{R_{\text{base}} - \alpha}{1-\alpha} =: R_{\min}^{\text{LDPC}}$$

The code rate range of the sp-RC-LDPC family. α denotes the fraction of punctured bits

13-Nov-24

Possible Solutions: Protograph LDPC Code

2. Protograph LDPC code

- The LDPC codes are constructed based on a small prototype, denoted as protograph.
- The construction is conducted via a "copy-and-permute" operation.
- To facilitate the operation of blind reconciliation, the below structure is required.

Drawbacks: Ineffective design for short block length

- Large protographs are required to have a wide range of code rates
- However, this will limit the possible permuting options when lifting the protograph => introduce short cycles to the lifted matrix.

Short-length protograph LDPC codes construction usually prefer small protograph [R1].

[RI] Van Nguyen, Thuy, and Aria Nosratinia. "Rate-compatible short-length protograph LDPC codes." *IEEE Commun. Lett.*, 2013. 13-Nov-24

Possible Solution: Polar Code

3. Polar code

- Polar code with CA-SCL decoding algorithm can achieve competitive performance in a short blocklength regime.
- Polar codes can adapt code rate by disclosing bits => No bound for low code rate

The design of blind reconciliation with polar codes for satellite-based QKD systems has not been investigated in the literature.

Research Goals

- 1. Propose a design of blind reconciliation with polar codes for short length KR in satellite-based QKD systems
 - The methods focus on reducing the number of required communication rounds via the channel estimation using frozen bits.
- 2. Show effectiveness of the proposed design with the state-of-the-art approach in terms of KR efficiency, KR throughput, and final key rate.
- 3. Investigate the performance of the proposed design for the considered systems with BB84 protocols