Information Reconciliation with Polar Code for Satellite QKD Systems

Cuong Nguyen Computer Communications Lab. The University of Aizu

Nov. 13, 2024

Outline

- o Part I: An Introduction to Polar Codes
- Part II: Information Reconciliation with Polar Code for Satellite QKD oSystems

Overview of Polar Codes

Polar codes are a type of *error-correction code*, firstly introduced in 2009.

• ECC or channel code: error-control methods that add redundancy to the original message so that a certain number of errors can be corrected.

Key Features:

- One of the newest ECC
- Adopt for control channels of the 5G standards
- Provably capacity-approaching performance

*Key idea behind polar code: C*hannel polarization, which is a technique that redistributes channel capacities among various instances of that channel.

This presentation will cover:

- Channel polarization, which is a fundamental concept of polar codes
- Decoding algorithm: Successive Cancellation (SC)

Table. Overview of Channel Code Used in Wireless Mobile Telecommunications Generations.

Review of Channel Capacity

Channel capacity is the *theoretical maximum information rate* that can be reliably transmitted over a communication channel.

• Reliability: bit-error rate can be made arbitrarily small

 X, Y : random variables representing the input and output of the channel. Γ presents the channel.

The channel capacity can be computed as

$$
C=\max_{\{\Pr(x)\}}I(X;Y),
$$

Example: A binary erasure channel (BEC)

Channel input: $X \in \{0,1\}$ ϵ : channel erasure probability Channel output: $Y \in \{0,1,?\}$, where ? is the erasure symbol Channel capacity of BEC: $C = 1 - \varepsilon$ When $\varepsilon = 0 \Rightarrow C = 1$, the channel is noiseless

13-Nov-24 4 When $\varepsilon = 1 \Rightarrow C = 0$, the channel is totally unreliable

Channel Polarization: A Basic Transformation

Channel polarization: A technique that redistribute channel capacities among various instance of a channel while *conserving the total capacity of them.*

To achieve the channel polarization, we can apply *channel combining to these channels.*

A basic transformation of channel combining

Take two bits (u_1, u_2) and generate two bits (x_1, x_2) , in which $x_1 = u_1 \bigoplus u_2$, $x_2 = u_2$

The capacity of the compound channel: $I(U_1, U_2; Y_1, Y_2) = I(X_1, X_2; Y_1, Y_2) = 2I_{\Gamma}$

Remark: The basic transformation does not reduce the channel capacity.

Equivalent Channels

Applying some mathematical manipulations, we can rewrite the capacity of the compound channel as

$$
2I_{\Gamma} = I(X_1, X_2; Y_1, Y_2)
$$

= $I(U_1; Y_1, Y_2) + I(U_2; Y_1, Y_2, U_1)$
Channel Γ^- Channel Γ^+

This implies that the compound channel can be split into two channels with different channel *capacities,* i.e., Γ^+ and Γ^- .

Equivalent Channels - Example

We can only recover u_1 if we have both y_1 and y_2

$$
\Rightarrow \Gamma^{-}: u_1 \to \begin{cases} u_1 & \text{with prob. } (1-\varepsilon)^2 \\ ? & \text{with prob. } 2\varepsilon - \varepsilon^2 \end{cases}
$$

 \Rightarrow Γ^- can be equivalently presented as a BEC with the erasure probability $2\varepsilon - \varepsilon^2$

$$
\Gamma^-: \text{ BEC}(2\varepsilon-\varepsilon^2)
$$

Equivalent Channels – Example (Cont.)

With u_1 at the output, we can always recover u_2 unless both y_1 and y_2 are erased.

$$
\Rightarrow \Gamma^+ u_2 \rightarrow \begin{cases} u_2 & \text{with prob. } 1 - \varepsilon^2 \\ ? & \text{with prob. } \varepsilon^2 \end{cases}
$$

 Γ^+ can be equivalently presented as a BEC with the erasure probability ε^2

 Γ^+ : BEC(ε²)

Channel Polarization: Remarks

Regarding Γ^- : BEC(2 $\varepsilon - \varepsilon^2$), we see that $2\varepsilon - \varepsilon^2 \geq \varepsilon$ for $\varepsilon \in [0,1]$

- \Rightarrow Channel capacity of Γ^- is smaller than that of the original BEC, i.e., $C(\Gamma^-) \leq C(\Gamma)$. Regarding Γ^+ : BEC(ε^2), we see that $\varepsilon^2 \leq \varepsilon$ for $\varepsilon \in [0,1]$
- \Rightarrow Channel capacity of Γ^+ is larger than that of the original BEC, i.e., $C(\Gamma^+) \geq C(\Gamma)$.

Example: $\varepsilon = 0.5$. We have $C(\Gamma^{-}) = 0.25 \le C(\Gamma) \le C(\Gamma^{+}) = 0.75$.

Remark:

- Basic channel transformation generates two new artificial channels.
	- o One of these new channels has a higher capacity.
	- o The other has a lower capacity.

 \Rightarrow *Further channel polarization can be done by continuing recursively apply the channel combining.*

Two-fold of The Basic Transformation

Three-fold of The Basic Transformation

Equivalent Channel Performance

13-Nov-24 12 : Number of channels, : BEC erasure probability

ECC Based on Channel Polarization

Remark from channel polarization phenomenon

- 1. After applying η -fold of the basic transformation, we have a total of 2^{η} channels.
- 2. When η approaches infinity $(\eta \rightarrow \infty)$,
	- The number of channels with moderate values approaches zero.
	- All the other channels are either perfectly reliable $(I(\Gamma^{\dots}) \rightarrow 1)$ or totally unreliable $(I(\Gamma^{\dots}) \rightarrow 0)$.
- 3. The fraction of channels that become perfectly reliable *approximately equals the capacity of the channel*.

Key ideas of polar codes

- 1. Assign determined values, *denoted as frozen bits*, on the unreliable channels.
- 2. Assign information bits on the reliable channels.

Remarks

- Very long code length is needed for efficient polarization to happen *=> Theoretically, polar codes can achieve capacity with a very long code length.*
- For finite η , there are intermediate channels which are neither good nor bad. A simple solution is to transmit also frozen bits on these channels, leading to a *rate loss*.

Encoding: Notations & Example

The polar encoding depends on three parameters:

- $k: #$ of information bits
- \bullet $N:$ codeword length
- \mathcal{F} : location of the frozen bits

Example: An $N = 8$ polar code having $k = 4$, $\mathcal{F} =$ {1, 2, 3, 5}.

The data is $$

Decoding Algorithms: A Big Picture

Successive Cancellation (SC)

Key idea:

- The decoding is performed sequential. Each bit is decoded one after the other.
- The SC decoding algorithm can be seen as a reverse process of the encoder.
- The algorithm operates on the same circuit of the encoder.
- The input is log likelihood ratio.

Log likelihood Ratio (LLR)

- Let x be the binary-valued random variable taking values on set $\{0, 1\}$.
- The LLR of x measures the reliability of x and can be computed as

$$
L(x) = \ln \frac{P(x=1)}{P(x=0)}
$$

• If
$$
P(x = 0) \rightarrow 0
$$
, $|L(x)| \rightarrow \infty$

• If
$$
P(x = 0) = P(x = 1) = 1/2
$$
, $|L(x)| \to 0$

Successive Cancellation (SC)

Successive Cancellation (SC): Information Flow

Successive Cancellation List (SCL)

Drawbacks of SC decoding algorithm: It can only work well with a very long codeword, where the polarization effect is extreme.

Key idea to improve:

- Maintain a list of candidate paths, which is built up when the algorithm proceeds.
- Delete the worst paths and keep the maximum number of candidate paths as L .

By additionally considering the CRC, the performance of SCL decoding algorithm *can be on par with LDPC codes in short and moderate block lengths*.

Outline

- o Part I: An Introduction to Polar Codes
- o Part II: Information Reconciliation with Polar Code for Satellite QKD Systems

Key Reconciliation for Satellite QKD Systems

- o Wireless QKD systems using FSO
	- Support wireless/mobile applications, e.g., secure Internet of Vehicles (IoV)
- o We focus on key reconciliation step in the post-processing phase
	- KR: attempt to reconcile sifted keys from both sides

o Why is it important:

- o The uncertainty of time-varying FSO channel ⇒ Highly fluctuating quantum bit-error rate (QBER)
- 13-Nov-24 21 • Long propagation delay of satellite communication (in order of milliseconds) ⇒ Increase the latency of the KR.

My Previous Work: Blind Reconciliation with LDPC Codes

- o Key idea: Alice reveals more information after each decoding attempt until Bob can correct
- o This can be done with a special family of LDPC Codes (Protograph LDPC)
- o Syndrome-based error estimation is implemented to reduce the number of required communication rounds.

Flow chart of the blind reconciliation method

An Open Issue: KR for Short Blocklength

- o An open issue*: In some situations, the sifted key lengths are relatively short (*~1000 *bits).*
	- Atmospheric loss reduces the arrived photon rates
	- DV-QKD protocols have low repetition rate.
- \Rightarrow It is necessary to have a proper KR design for short block length.

Fig. Sifted key rate versus time of the Micius quantum satellite to the ground station

Possible Solutions: *sp-*RC-LDPC Code

Possible coding solutions for blind reconciliation: (1) RC-LDPC with shortening and puncturing (sp), (2) protograph RC-LDPC code, and (3) polar code.

- *1. sp-*LDPC code design
- o Adding random bits to the sifted keys
- o These bits are treated as puncturing and shortening bits at Bob's decoder
- o When a decoding attempt fails, Alice will disclose more punctured bits to Bob.

Drawbacks: The code rates in the family depends on the fraction of punctured bits, α

- *If* α is high \Rightarrow limit the highest code rate
- *If* α is small \Rightarrow limit the code range of the family

$$
R_{\mathrm{max}}^{\mathrm{LDPC}} := \frac{R_{\mathrm{base}}}{1-\alpha} \geq R \geq \frac{R_{\mathrm{base}}-\alpha}{1-\alpha} =: R_{\mathrm{min}}^{\mathrm{LDPC}}
$$

The code rate range of the *sp*-RC-LDPC family. α denotes the fraction of punctured bits

Possible Solutions: Protograph LDPC Code

2. Protograph LDPC code

- o The LDPC codes are constructed based on a small prototype, denoted as protograph.
- o The construction is conducted via a "copy-and-permute" operation.
- o To facilitate the operation of blind reconciliation, the below structure is required.

Drawbacks: *Ineffective design for short block length*

- *Large protographs are required to have a wide range of code rates*
- However, this will limit the possible permuting options when lifting the protograph \Rightarrow introduce short *cycles to the lifted matrix.*

Short-length protograph LDPC codes construction usually prefer small protograph [R1].

13-Nov-24 25 [R1] Van Nguyen, Thuy, and Aria Nosratinia. "Rate-compatible short-length protograph LDPC codes." *IEEE Commun. Lett.*, 2013.

Possible Solution: Polar Code

3. Polar code

- o Polar code with CA-SCL decoding algorithm can achieve competitive performance in a short blocklength regime.
- \circ Polar codes can adapt code rate by disclosing bits \Rightarrow No bound for low code rate

The design of blind reconciliation with polar codes for satellite-based QKD systems has not been investigated in the literature.

Research Goals

- 1. Propose a design of blind reconciliation with polar codes for short length KR in satellite-based QKD systems
	- The methods focus on reducing the number of required communication rounds via the channel estimation using frozen bits.
- 2. Show effectiveness of the proposed design with the state-of-the-art approach in terms of KR efficiency, KR throughput, and final key rate.
- 3. Investigate the performance of the proposed design for the considered systems with BB84 protocols