
Introduction to Low-density
Parity-check Code (LDPC)

NGUYEN Trong Cuong

Computer Communication Lab

21st Dec., 2022

1

Outline

2

I. Error Correction Code

II. Low-density Parity-check Codes

1. Introduction

2. Hard-Decision Bit Flipping

3. Messaging-Passing Algorithm

III. Future Direction

Outline

3

I. Error Correction Code

II. Low-density Parity-check Codes

1. Introduction

2. Hard-Decision Bit Flipping

3. Messaging-Passing Algorithm

III. Future Direction

Error Correction Codes

4

❑Error Correction Codes (ECC) are error-control methods that add redundancy

to the original message so that a certain number of errors can be corrected.

❑History of ECCs

1948: Shannon published “A Mathematical Theory of Communication”

1950: Hamming codes

1955: Convolutional codes

1960: BCH codes

1962: LDPC codes

1993: Turbo codes

2009: Polar codes

1954: Reed-Solomon codes

1957: Cyclic codes

ECCs in the Past

• Hardware limitations

• Hard-decision decoder

• Convolutional codes are most

efficient but have high

decoding complexity.

• Other common codes are

Reed-Solomon, BCH,..

ECCs in Recent Standards

• Turbo codes: 3G UMTS, 4G

LTE

• LDPC: WiFi, WiMax, 10G

Base-T Ethernet, 5G New

Radio (data channel)

• Polar codes: 5G New Radio

(control channel)

Future Requirements of ECCs

To enhance user experience and

support diverse applications, ECCs

needs

• Higher error correction capability

• Lower computational complexity

• Wide range support of different

code rate with compatibility.

Block Code

Classifications of ECC

❑Error Correction Codes (ECC) can be classified into block code and

convolutional code.

5

Convolutional

Code

❑ Work on fixed-size blocks of bits

or symbols

(+) Best for burst sources

(+) Decoding complexity is simpler

than the convolutional code

❑ E.g., Reed–Solomon code, which

is used in compact disc, DVD,…

❑ Work on bit streams of arbitrary

length

(+) Best for very large data streams

(-) Decoding complexity increases

exponentially in the code length

❑ Digital video, radio, and satellite

communication

Message Modulo 2 Generator

matrix

Codeword

… 0 1 0 1 1 1 1 1 0 …

Linear Block Code

❑A 𝑁,𝐾 binary block code 𝒞 is a set of 2𝐾 vectors of length 𝑁.

o Each vector is called a codeword.

o Each codewords has 𝑁 bits.

6

❑An 𝑁,𝐾 block code 𝒞 is linear if and only if any linear combination of codewords

is also a codeword.

❑A linear code can be described by a generator matrix 𝐺 or a parity check matrix 𝐴.

Example: All the codewords of the Hamming block code (7,4)

=> There are 24 = 16 codewords. Each of them has 7 bits.

Generator Matrix

7

❑Generator matrix 𝐺 of a 𝑁,𝐾 block code 𝒞 is used to encode a 𝐾-bits

message to a 𝑁-bits codeword 𝐜 ∈ 𝒞.

𝐦𝐺 = 𝐜

where 𝐦 is the 1 × 𝐾 message vector, 𝐺 is a 𝐾 × 𝑁 matrix.

Example: The generator matrix 𝐺 for block code 𝒞 (7,4)

Every possible message 𝐦 can be mapped into a codeword in 𝒞

If 𝐦 = [0,0,0,0] => 𝐜 = 0,0,0,0,0,0,0
If 𝐦 = [0,0,0,1] => 𝐜 = 0,0,0,1,1,0,1

…

If 𝐦 = [1,1,1,1] => 𝐜 = 1,0,0,1,0,1,1

Parity Check Matrix

❑For every codeword 𝐜 ∈ 𝒞, the (𝑁 − 𝐾) × 𝑁 matrix 𝐴 is defined as the parity

check matrix for 𝒞 only if

where 𝑀 = 𝑁 − 𝐾, 𝑧𝑚 = 𝐚𝑚𝐜
𝑇 = 0 is a parity check 0 < 𝑚 ≤ 𝑀 .

8

❑ Example: The parity check matrix 𝐴 for block code 𝒞 (7,4)

For every codeword 𝐜 ∈ 𝒞, 𝐴𝐜𝑇 = 𝟎.

Outline

9

I. Error Correction Code

II. Low-density Parity-check Codes

1. Introduction

2. Hard-Decision Bit Flipping

3. Messaging-Passing Algorithm

III. Future Direction

Low-density Parity-check Codes

10

❑A low-density parity check (LDPC) code is a linear block code that has a very

sparse parity check matrix.

oA matrix is said to be sparse if more than half of elements are zero.

1948: Shannon stated the noisy-channel coding theorem

1962: Gallager introduced LDPC codes

1995: MacKay rediscovered LDPC codes

1982: Michel Tanner used Tanner graph

to present LDPC codes

2001: A design of LDPC code within

0.045 dB of the Shannon limit !

❑History of LDPC codes

❑Applications
o Digital Video Broadcasting - Satellite - Second Generation (DVB-S2)

o 10G Base-T Ethernet

o 802.11ax (Wifi 6)

o 5G New Radio (data channel)

Classification of LDPC

❑A regular LDPC code has a parity
check matrix, whose every columns
has the same number of ones and
every row has the same number of
ones.

The parity check matrix 𝐴 has 4 ones each row

and 2 ones each column => regular

The parity check matrix 𝐴 has different

numbers of ones in each row => irregular

11

❑An irregular LDPC code is one

whose number of ones in each

row/column of the parity check matrix

is not constant.

Example:

Regular LDPC

❑The column weight 𝑤𝑐 is the number of 1’s in each column.

o 𝑤𝑐 represents the number of checks that one bits takes.

❑The row weight 𝑤𝑟 is the number of 1’s in each row.

o 𝑤𝑟 represents the number of bits in one check.

❑ . The number of ones in 𝑀 ×𝑁 parity check matrix 𝐴 is 𝑀𝑤𝑟 = 𝑁𝑤𝑐

=> The code rate 𝑅 = 1 −
𝑤𝑐

𝑤𝑟

Example: A 5 × 10 parity check matrix 𝐴 has 𝑤𝑟 = 4,𝑤𝑐 = 2

𝑤𝑟 = 4 => Every checks involves 4 bits.

𝑤𝑐 = 2 => Every bits participates in 2 checks

Check 𝑧1 involves bit 𝑐4, 𝑐7, 𝑐8, 𝑐10

Bit 𝑐3 participates in check 𝑧2, 𝑧5

12

Representation of LDPC codes (1)

❑ The parity check matrix can be presented as a bipartite graph.
o A bipartite graph is a graph in which the nodes can be classified into two

classes, and no edge connects two nodes from the same class.

o A Tanner graph is a bipartite graph which represents the parity check matrix of

an error correcting code.

𝑧1 𝑧2
Check node

𝑧3 𝑧4 𝑧5

Bit node

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10
13

❑ The nodes in the Tanner graph are partitioned into two groups, i.e., bit nodes

and check nodes.
o Each bit node presents a bit in the codeword.

o Each check node presents a check.

o Each edge presents a 1’s in the parity check matrix.

Edge

Representation of LDPC codes (2)

Check nodes

Bit nodes

14

Bit node 𝑐1 connects

to check bit 𝑧1, 𝑧2
corresponding to the

checks that bit 1

participates in.

Example: A 5 × 10 parity check matrix 𝐴 has 𝑤𝑟 = 4,𝑤𝑐 = 2

o 𝑀 = number of checks = 5 => 5 check nodes

o 𝑁 = number of bits = 10 => 10 bit nodes

o Each check node connect to 𝑤𝑟 = 4 bit nodes.

o Each bit node connects to 𝑤𝑐 = 2 check nodes.

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

Representation of LDPC codes (3)

15

Example: A 5 × 10 parity check matrix 𝐴 has 𝑤𝑟 = 4,𝑤𝑐 = 2

Check node 𝑧1 connects

to bit nodes 𝑐1, 𝑐2, 𝑐3, 𝑐4
corresponding to the

bits that check 1

involves.

Check nodes

Bit nodes

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

o 𝑀 = number of checks = 5 => 5 check nodes

o 𝑁 = number of bits = 10 => 10 bit nodes

o Each check node connect to 𝑤𝑟 = 4 bit nodes.

o Each bit node connects to 𝑤𝑐 = 2 check nodes.

Outline

16

I. Error Correction Code

II. Low-density Parity-check Codes

1. Introduction

2. Hard-Decision Bit Flipping

3. Messaging-Passing Algorithm

III. Future Direction

Hard-Decision Bit Flipping

❑ The basic idea of Hard-Decision Bit Flipping is the information update

between check and bit nodes in each iteration.
o A check node uses the information of its bit nodes to compute the parity check.

o A bit node uses the information of its check nodes to know how many parity checks

it has failed.

17

❑ The more failed parity checks, the more likely that the bit node is wrong.

Check nodes

Bit nodes

Hard-Decision Bit Flipping: Algorithm

18

❑ The Hard-Decision Bit Flipping algorithm:

Initial: Set a maximum number of iterations 𝐿. For each iteration:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is

stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached,

the algorithm is stopped.

Check nodes

Bit nodes

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

❑ Consider an irregular parity check matrix 𝐴

19

0 1 0 0 1 0 0

Received bits

0 0 0 0 0 0 0

Original bits

Binary Symmetric Channel

(BSC)

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1 0 0 1 0 0

0 0 0 0 0 0 0Original bits:

Failed parity check

Successful parity check

❑ Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

20

0

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

1 0 0 1 0 0

0 0 0 0 0 0 0Original bits:

Failed parity check

Successful parity check

❑ Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

21

0

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

1 0 0 1 0 0

0 0 0 0 0 0 0Original bits:

Failed parity check

Successful parity check

❑ Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

22

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1 0 0 1 0 0

0 0 0 0 0 0 0Original bits:

❑ Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

23

Failed parity check

Successful parity check

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1 0 0 1 0 0

0 0 0 0 0 0 0Original bits:

❑ Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

24

Failed parity check

Successful parity check

3

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1 0 0 1 0 0

21 1 1 1 1

0 0 0 0 0 0 0Original bits:

The number of

failing parity

checks

❑ Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

25

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1 0 0 1->0 0 0

21 1 1 1 13

0 0 0 0 0 0 0Original bits:

❑ Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

26

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1 0 0 0 0 0

0 0 0 0 0 0 0Original bits:

❑ Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

27

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1 0 0 0 0 0

0 0 0 0 0 0 0Original bits:

❑ Iteration 2:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

28

Failed parity check

Successful parity check

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1 0 0 0 0 0

0 0 0 0 0 0 0Original bits:

131 2 1 0 0

The number of

failing parity

checks

❑ Iteration 2:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

29

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1->0 0 0 0 0 0

0 0 0 0 0 0 0Original bits:

131 2 1 0 0

❑ Iteration 2:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

30

Hard-Decision Bit Flipping

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 0 0 0 0 0 0

0 0 0 0 0 0 0Original bits:

❑ Iteration 2:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

31

Hard-Decision Bit Flipping: An Example

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 0 0 0 0 0 0

0 0 0 0 0 0 0Original bits:

❑ Iteration 3:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.

4. Increase the iteration counter. If the maximum number of iterations is reached, the

algorithm is stopped.

Parity check failed

Parity check succussed

Stop

32

Hard-Decision Bit Flipping: An Example

The received codeword is recovered successfully

0 0 0 0 0 0 0

0 1 0 0 1 0 0Received bits:

Original bits:

0 0 0 0 0 0 0Recovered bits:

33

Failed parity check

Successful parity check

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 0 0 0 0 0 0

Outline

34

I. Error Correction Code

II. Low-density Parity-check Codes

1. Introduction

2. Hard-Decision Bit Flipping

3. Messaging-Passing Algorithm

III. Future Direction

Soft-decision Decoder (1)

35

❑ Hard-decision decoder operates on data that take on a fixed set of possible

values (commonly 0 and 1).
o In real life, the received signal is fluctuating

o Treats the different signal levels as the same value

❑ Soft-decision decoder takes on a whole range of values in between.
o Uses the information from the physical layer to “helps” the decoder make the

decision better.

❑ The basic idea of Hard-Decision Bit Flipping is the information update

between check and bit nodes in each iteration.

❑ Message-passing Algorithm is based on this idea but for soft-decision

decoding.

Soft-decision Decoder (2)

36

❑ Example: For binary phase-shift Keying (BPSK) modulation, the channel posterior

probability is given as

𝑝𝑛 𝑥 = 𝑃 𝑐𝑛 = 𝑥 𝐫 =
1

1 + 𝑒−2𝑎𝑟𝑛/𝜎
2

❑ The message-passing algorithm considers the channel posterior probability.
o Measure the “certainty” of bit 𝑐𝑛 given the observation of the received signal, 𝐫.

𝐜

Modulation

𝐭

AWGN

Encoder

𝐦

Demodulation

Soft-decision

Decoder

𝐫

𝐦

Ƹ𝐜

−𝑎 𝑎

𝜎2

−𝑎 𝑎
𝜎2

𝐦 Message vector

𝐜 Codeword vector

𝐭 Transmitted signal

𝐫 Received signal

𝑎 Amplitude

𝜎2 Noise variance

Message-passing Algorithms: 𝑞𝑛(𝑥) (1)

Target of the algorithm: The decoder tries to evaluate the probabilities

37

❑ 𝑞𝑛 0 + 𝑞𝑛(1) = 1
❑ Presents the probability that bit 𝑐𝑛 = 𝑥 given the observation of received signal

and all checks involving 𝑐𝑛 are satisfied.

❑ The higher 𝑞𝑛 𝑥 , the more likely that 𝑐𝑛 = 𝑥.

𝑞𝑛 𝑥 = 𝑃 𝑐𝑛 = 𝑥 𝐫, {𝑧𝑚 = 0,m ∈ ℳ𝑛})

where ℳ𝑛 is the set of checks in which bit 𝑐𝑛 participates

ℳ𝑛 = {𝑚: 𝐴𝑚𝑛 = 1}

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

ℳ1 = {1,2,5}

𝑐𝑛: 𝑛th bit

𝑧𝑚: 𝑚th check

Message-passing Algorithms: 𝑞𝑛(𝑥) (2)

38

How to compute 𝑞𝑛 𝑥 ?

𝑝𝑛(𝑥): the posterior

probability

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

❑ 𝑟𝑚𝑛 𝑥 = 𝑃 𝑧𝑚 = 0 𝑐𝑛 = 𝑥, 𝐫) presents the probability that check node 𝑧𝑚
is satisfied given 𝑐𝑛 = 𝑥.

Node 𝑐1 uses

𝑟11(𝑥), 𝑟21(𝑥), r51(𝑥)
to compute 𝑞1(𝑥)

=> To compute the probability 𝑞𝑛(𝑥), bit node 𝑐𝑛 will use 𝑟𝑚𝑛 𝑥 from its

involving check nodes.

Message-passing Algorithms : 𝑟𝑚𝑛 (1)

How to compute 𝑟𝑚𝑛?

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

39

E.g., 𝒩1 = 1,2,3,6,7,10
𝒩1\1 = {2,3,6,7,10}

where

o 𝒩𝑚 is the set of bits in which check 𝑧𝑚 participates

𝒩𝑚 = {𝑛: 𝐴𝑚𝑛 = 1}

o 𝒩𝑚\𝑛 is the set of bits in which check 𝑧𝑚 participates, excluding bit 𝑐𝑛

=> 𝑟𝑚𝑛(𝑥) is computed based on bit nodes that 𝑧𝑚 participates excluding 𝑐𝑛.

Check node 𝑧1 computes

𝑟11(𝑥) based on its bit

nodes excluding 𝑐1

Message-passing Algorithms : 𝑟𝑚𝑛 (2)

How to compute 𝑟𝑚𝑛?

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

40

❑ The probability 𝑧𝑚 = 0 given the value of 𝑐𝑛 and the 𝑐𝑛′ is either 0 or 1.

Check node 𝑧1 compute

𝑟11(𝑥) based on

𝑞12 𝑥 , 𝑞13 𝑥 ,𝑞16 𝑥 ,

𝑞17 𝑥 , 𝑞110 𝑥

❑ {𝑐𝑛′} is set of bit node 𝑐𝑛′ with 𝑛′ ∈ 𝒩𝑚\𝑛
o E.g., 𝑛 = 1, 𝑐𝑛′ = {𝑐2, 𝑐3, 𝑐6, 𝑐7, 𝑐10}
o This set ranges from {0,0,0,0,0} to {1,1,1,1,1}

Message-passing Algorithms : 𝑞𝑚𝑛 (1)

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

41

❑ 𝑞𝑚𝑛(𝑥) presents the probability that bit 𝑐𝑛 = 𝑥 given all checks involving 𝑐𝑛,

excluding 𝑧𝑚, are satisfied.

=> Similar to 𝑞𝑛(𝑥), 𝑞𝑚𝑛(𝑥) can be expressed as

How to compute 𝑞𝑚𝑛?

where ℳ𝑛\𝑚 is the set of checks in which bit 𝑐𝑛 participates, excluding 𝑧𝑚.

E.g., ℳ2 = {1,4,5}

ℳ2\1 = {4,5}To compute 𝑞12(𝑥), bit node

𝑐2 use 𝑟42(𝑥) and 𝑟52(𝑥).

The Relationship Between Probabilities (1)

42

❑ Target of the algorithm: The decoder tries to evaluate the probabilities

𝑞𝑛 𝑥 = 𝑃 𝑐𝑛 = 𝑥 𝐫, all checks involving cn are satisfied)

𝑟𝑚𝑛 𝑥 = 𝑃 𝑧𝑚 = 0 𝑐𝑛 = 𝑥, 𝐫)

𝑞𝑚𝑛 𝑥 = 𝑃 𝑐𝑛 = 𝑥 𝐫, all checks, except 𝑧𝑚, involving cn are satisfied)

❑ 𝑞𝑛 𝑥 is computed based on 𝑟𝑚𝑛 𝑥 , 𝑚 ∈ ℳ𝑛

❑ 𝑟𝑚𝑛 𝑥 is computed based on 𝑞𝑚𝑛′ 𝑥 , 𝑛′ ∈ 𝒩𝑚\𝑛

To fix this bit, …

and these bit

are used too.

ℳ𝑛

𝑐𝑛
𝒩𝑚\𝑛

𝑧𝑚

these checks

are used …

❑ Each bit is consider separately.

❑ Its probabilities is then used to compute

other bits.

By iteratively updating, all errors can

be detected and corrected.

The Relationship Between Probabilities (2)

43

𝐪n
(𝑥)

𝐫mn
(𝑥)

𝐪mn
(𝑥)

❑ 𝐪n
(𝑥)

represents a 𝑁 × 1 vector, in which

the element in the position 𝑛 is the

probability 𝑞𝑛(𝑥).

❑ 𝐫mn
𝑥

represents a 𝑀 ×𝑁 matrix, in which

the element in the position (𝑚, 𝑛) is the

probability 𝑟𝑚𝑛(𝑥).
o 0 < 𝑚 < 𝑀, 0 < 𝑛 < 𝑁

❑ 𝐪mn
𝑥

represents a 𝑀 ×𝑁 matrix, in which

the element in the position (𝑚, 𝑛) is the

probability 𝑞𝑚𝑛(𝑥).
o 0 < 𝑚 < 𝑀, 0 < 𝑛 < 𝑁

Pseudocode of The Decoding Algorithm

44

Input: The parity check matrix 𝐴, the maximum number of iterations 𝐿 and the

channel posterior probabilities 𝑝𝑛(𝑥) .

Initialization: Set 𝑞𝑚𝑛 𝑥 = 𝑝𝑛(𝑥) for all (𝑚, 𝑛) with 𝐴 𝑚, 𝑛 = 1.

For each iteration:

Check node update:

Update 𝐫mn
𝑥

by the value of 𝐪mn
𝑥

.

Bit node update:

Update 𝐪mn
𝑥

by the value of 𝐫mn
𝑥

.

Parity check:

Update 𝐪n
𝑥

by the value of 𝐫mn
𝑥

.

For each elements in 𝐪n
𝑥

:

If 𝑞𝑛 𝑥 > 0.5: set ො𝒄𝑛 = 𝑥.

If 𝐴ො𝒄 = 0: break;

Message-passing Algorithms: An Example

45

𝐜 = 0 0 0 1 0 1 0 1 0 1

𝐫 = -0.63 -0.83 -0.73 -0.04 0.1 0.95 -0.76 0.66 -0.55 0.58

Ƹ𝐜 = 0 0 0 0 1 1 0 1 0 1

𝐜

Modulation

AWGN

Encoder

𝐦

Demodulation

Soft-decision

Decoder

𝐫

𝐦

Ƹ𝐜

𝐭

𝐭 = -2 -2 -2 2 -2 2 -2 2 -2 2

❑ Example: Consider the system with

the original message

𝐦 = 1 0 1 0 1

❑ The BPSK is used with the amplitude

𝑎 = 2, the noise variance 𝜎2 = 2.

Example: Parity Check Matrix

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

46

❑ The parity check matrix 𝐴 is given as

follows.

❑ It should be noted that the matrix 𝐴 is

not sparse. However, it is used in the

example for illustrative purposes.

Initialization

47

𝐪𝑚𝑛
(1)

=

0.22 0.16 0.19 0 0 0.87 0.18 0 0 0.76

0.22 0 0.19 0 0.55 0.87 0 0.79 0.25 0

0 0 0.19 0.48 0.55 0 0.18 0 0.25 0.76

0 0.16 0 0.48 0.55 0.87 0 0.79 0 0.76

0.22 0.16 0 0.48 0 0 0.18 0.79 0.25 0

𝐫𝑚𝑛
(1)

=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

❑ The channel posterior probabilities are

0.22 0.16 0.19 0.48 0.55 0.87 0.18 0.79 0.25 0.76𝑝𝑛 𝑥 =

Iteration 1 – Check Node Update

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

48

0.45 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Update 𝑟11 1 based on 𝑞12 1 , 𝑞13 1 , 𝑞16 1 , 𝑞17 1 , and 𝑞1,10 1

𝐫𝑚𝑛
(1)

=

Iteration 1 – Check Node Update

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

49

0.45 0.46 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Update 𝑟12 1 based on 𝑞11 1 , 𝑞13 1 , 𝑞16 1 , 𝑞17 1 , and 𝑞1,10 1

𝐫𝑚𝑛
(1)

=

Iteration 1 – Check Node Update

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

50

0.45 0.46 0.45 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Update 𝑟13 1 based on 𝑞11 1 , 𝑞12 1 , 𝑞16 1 , 𝑞17 1 , and 𝑞1,10 1

𝐫𝑚𝑛
(1)

=

Iteration 1 – Check Node Update

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

51

0.45 0.46 0.45 0 0 0.54 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

The procedure continues until all the check nodes are updated.

𝐫𝑚𝑛
(1)

=

Iteration 1 – Check Node Update Finishes

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

52

0.45 0.46 0.45 0 0 0.54 0.45 0 0 0.56

0.51 0 0.51 0 0.46 0.49 0 0.49 0.51 0

0 0 0.5 0.49 0.5 0 0.5 0 0.5 0.5

0 0.5 0 0.49 0.5 0.5 0 0.5 0 0.5

0.5 0.5 0 0.54 0 0 0.5 0.5 0.5 0

𝐫𝑚𝑛
(1)

=

0.22 0.16 0.19 0 0 0.87 0.18 0 0 0.76

0.22 0 0.19 0 0.55 0.87 0 0.79 0.25 0

0 0 0.19 0.48 0.55 0 0.18 0 0.25 0.76

0 0.16 0 0.48 0.55 0.87 0 0.79 0 0.76

0.22 0.16 0 0.48 0 0 0.18 0.79 0.25 0

Iteration 1 – Bit Node Update

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

53

𝐪𝑚𝑛
(1)

=

0.23 0.16 0.19 0 0 0.87 0.18 0 0 0.76

0.22 0 0.19 0 0.55 0.87 0 0.79 0.25 0

0 0 0.19 0.48 0.55 0 0.18 0 0.25 0.76

0 0.16 0 0.48 0.55 0.87 0 0.79 0 0.76

0.22 0.16 0 0.48 0 0 0.18 0.79 0.25 0

Iteration 1 – Bit Node Update

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

54

Update 𝑞11 1 based on 𝑟21 1 , 𝑟51 1 .

𝐪𝑚𝑛
(1)

=

0.23 0.16 0.19 0 0 0.87 0.18 0 0 0.76

0.19 0 0.19 0 0.55 0.87 0 0.79 0.25 0

0 0 0.19 0.48 0.55 0 0.18 0 0.25 0.76

0 0.16 0 0.48 0.55 0.87 0 0.79 0 0.76

0.22 0.16 0 0.48 0 0 0.18 0.79 0.25 0

Iteration 1 – Bit Node Update

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

55

Update 𝑞21 1 based on 𝑟11 1 , 𝑟51 1 .

𝐪𝑚𝑛
(1)

=

0.23 0.16 0.19 0 0 0.87 0.18 0 0 0.76

0.19 0 0.19 0 0.55 0.87 0 0.79 0.25 0

0 0 0.19 0.48 0.55 0 0.18 0 0.25 0.76

0 0.16 0 0.48 0.55 0.87 0 0.79 0 0.76

0.19 0.16 0 0.48 0 0 0.18 0.79 0.25 0

Iteration 1 – Bit Node Update

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

56

𝐪𝑚𝑛
(1)

=

Update 𝑞51 1 based on 𝑟11 1 , 𝑟21 1 . The procedures finished until all

the bit nodes are updated.

0.23 0.16 0.19 0 0 0.87 0.18 0 0 0.76

0.19 0 0.16 0 0.56 0.89 0 0.79 0.25 0

0 0 0.17 0.51 0.52 0 0.16 0 0.26 0.8

0 0.14 0 0.51 0.51 0.88 0 0.78 0 0.8

0.19 0.14 0 0.47 0 0 0.15 0.79 0.26 0

Iteration 1 – Bit Node Update Finished

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

57

𝐪𝑚𝑛
(1)

=

Iteration 1 – Compute the 𝐪n
(𝑥)

𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1 𝑐8 𝑐9 𝑐10

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

58

0.45 0.46 0.45 0 0 0.54 0.45 0 0 0.56

0.51 0 0.51 0 0.46 0.49 0 0.49 0.51 0

0 0 0.5 0.49 0.5 0 0.5 0 0.5 0.5

0 0.5 0 0.49 0.5 0.5 0 0.5 0 0.5

0.5 0.5 0 0.54 0 0 0.5 0.5 0.5 0

Compute 𝑞1(1) based on 𝑟11 1 , 𝑟21 1 and 𝑟51 1 . The procedures finished until

all the bit nodes are updated.

𝐫𝑚𝑛
(1)

=

Iteration 1 – Parity Check

59

𝐪n
𝑥
= 0.19 0.14 0.17 0.5 0.52 0.88 0.16 0.78 0.26 0.8

Ƹ𝐜 = 0 0 0 1 1 1 0 1 0 1

❑ The estimated codeword is

❑ The estimated codeword is failed the parity check. The procedure is

repeated in the next iteration.

❑ After two more iterations, the estimated codeword is corrected.

Iteration 1:

Iteration 2:

Ƹ𝐜 = 0 0 0 1 1 1 0 1 0 1

Ƹ𝐜 = 0 0 0 1 1 1 0 1 0 1

Iteration 3:

Ƹ𝐜 = 0 0 0 1 0 1 0 1 0 1

=> Decoding successfully

❑ We have

Iterative Decoding Algorithms

60

❑ Example: Consider the decoding process of an LDPC code with 𝑅 = 1/2,

10000 × 20000 parity check matrix, column weight 𝑤𝑐 = 3, row weight

𝑤𝑟 = 6 (*).

(1) Original picture

(*) http://www.inference.org.uk/mackay/codes/gifs/

(3) Corrupted picture

after the transmission

through a noisy channel

(4) Message-passing

decode through 13

iterations

Redundancy

Encode

BSC with 𝑝 = 7.5%

Decode

The codeword is gradually corrected after each iteration.

(1) The picture after

encoding with LDPC

code

The Limitation of Iterative Decoding

61

❑ Cycles increase the dependence of information being received at each node during

message passing.

❑ Due to the presence of cycles, the results are only approximate.
o The algorithm may take more iterations to decode successfully

o Or the codeword can not even be decoded successfully

It is important to reduce the number of cycles in the parity check matrix.

❑ The performance of iterative decoding algorithms is affected by the presence of cycles

in the Tanner graph.
o A cycle of length 𝐿 in a Tanner graph is a path of 𝐿 edges that closes back on itself.

o Girth is the shortest cycle in the bipartite graph.

The Limitation of Iterative Decoding: Example

62

𝑧1

𝑐7

𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1

0 1 1 0 0 0 0

11 0 0 0 00

Why LDPC is good?

63

❑ According to Shannon's theorem of noise-channel coding, for a given rate 𝑅 ≤ 𝐶,

there exists an ECC of length 𝑁 such that the reliable transmission over a noisy

channel can be obtained as 𝑵 increases.
o E.g., Random codes proposed by Shannon, convolutional codes

❑ However, the decoding complexity of these codes grows exponentially with the

codewords length 𝑁.

❑ For LDPC codes, as fixed value of 𝑤𝑐 and 𝑤𝑟, the complexity of iterative decoding

grows linearly when 𝑁 increases.

The spareness of LDPC codes contributes to the good performance and

linear decoding complexity.

Codewords length

C
o

m
p

le
x

it
y

Exponential

Linear

The comparison of Turbo, LDPC and polar decoders implemented on the

application-specific integrated circuit (ASIC) drawn from over 100 papers [1]

[1] S. Shao et al., “Survey of turbo, LDPC, and polar decoder ASIC implementations,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2309–

2333, 3rd Quart., 2019.

Outline

64

I. Error Correction Code

II. Low-density Parity-check Codes

1. Introduction

2. Hard-Decision Bit Flipping

3. Messaging-Passing Algorithm

III. Future Direction

Optical Satellite-Assisted Internet of Vehicles

65

❑Internet of Vehicles (IoVs) is defined as a network of users, vehicles, and network
infrastructure to connect and exchange data over the Internet

❑Optical Satellite-Assisted IoVs

o Uses infrared frequency bands (180-400
Thz) to transmit data in free space

 Offer extremely high data rate (~ 𝐺𝑏𝑝𝑠 or
even Tbps)

o Use low-earth orbit (LEO) satellites

Offer global coverage

High-Speed Train

High-altitude platform

Self-driving carVehicles in Disaster Areas

LEO satellite

FSO Con.

Vehicles in Isolated Areas

Traffic Unit

AirplaneUnmanned

Aerial Vehicle

Cellular

base station

❑To enable more applications and increase the
quality of service for the IoVs, optical satellite
systems are proposed.

❑Challenging issue: Uncertainty channel

❑ Applications
o Safety: emergency call, speed control,…

o Navigation: traffic congestion control, real-

time information, parking helper,…

o Business: high-speed Internet for vehicles,

entertainment,…

Research Direction (1)

66

❑Why should we have new designs of error-control methods for optical satellite
system?

Due to the different frequency bands, the optical satellite communication is different
from the radio frequency (RF)-based satellite communication.

o E.g., the data rate and coherent time of the optical channel are much higher => The
usage of burst transmission is much preferable => The ability to encode and correct
long block codes in a low time manner.

o The optical link is deteriorated significantly by the atmosphere => The methods to cope
with the new degrading factor.

 The design of error-control methods for RF-based satellite systems may not
inefficient for the optical satellite system.

It is worth to reconsidering the new design of error-control methods for optical
satellite systems.

Research Direction (2)

67

❑What is the proposed design for optical satellite-assisted IoVs?

1. Hybrid ARQ (HARQ) Incremental Redundancy (IR) is taken into account

o In HARQ-IR, redundancy is transmitted whenever it is necessary and increases after
each retransmission.

o Compared to standalone ARQ, HARQ-IR reduces the frequency of retransmissions,
especially in long-distance communication.

o Compared to standalone ECCs, HARQ-IR increases the throughput efficiency as
redundancy is transmitted whenever it is necessary.

2. Rate-compatible Puncturing (RP) LDPC codes are taken into account

o LDPC codes have high performance and linear decoding complexity for very long
block code. => Suitable for high-speed transmission over noisy channels

o LDPC decoders implemented on ASICs show outstanding performance in terms of
throughput, size and energy consumption => Suitable for communications in IoVs

o Rate-compatible Puncturing is the process of creating higher code rates from a
lower mother code rate without changing their structure. => Work with HARQ-IR to
increase the performance

Research Direction: Propose a design of RP-LDPC-based HARQ-IR for
the optical satellite-assisted IoVs systems.

Research Plan

68

Feb.

- Simulate the system model

- Simulate convolutional and Reed-Solomon codes for benchmarking

May

- Run simulation to create results

- Finish the first draft

2023 2024

- Investigate and simulate the RP-LDPC

March

- Improve the design

- Validate simulation results by mathematical analysis

June

69

The material and examples in this slide are adopted from

[1] “Error Correction Coding: Mathematical Methods and Algorithms” by Todd K. Moon

[2] “Information Theory, Inference and Learning Algorithms” by David J. C. MacKay

[3] “Introduction to Low-Density Parity Check Codes” slide by Brian Kurkoski

Thank you for your attention

	Interface
	Slide 1: Introduction to Low-density Parity-check Code (LDPC)
	Slide 2: Outline

	Error Correction Codes
	Slide 3: Outline
	Slide 4: Error Correction Codes
	Slide 5: Classifications of ECC
	Slide 6: Linear Block Code
	Slide 7: Generator Matrix
	Slide 8: Parity Check Matrix

	LDPC
	Slide 9: Outline
	Slide 10: Low-density Parity-check Codes
	Slide 11: Classification of LDPC
	Slide 12: Regular LDPC
	Slide 13: Representation of LDPC codes (1)
	Slide 14: Representation of LDPC codes (2)
	Slide 15: Representation of LDPC codes (3)

	Hard-Decision Bit Flipping
	Slide 16: Outline
	Slide 17: Hard-Decision Bit Flipping
	Slide 18: Hard-Decision Bit Flipping: Algorithm
	Slide 19: Hard-Decision Bit Flipping: An Example
	Slide 20: Hard-Decision Bit Flipping: An Example
	Slide 21: Hard-Decision Bit Flipping: An Example
	Slide 22: Hard-Decision Bit Flipping: An Example
	Slide 23: Hard-Decision Bit Flipping: An Example
	Slide 24: Hard-Decision Bit Flipping: An Example
	Slide 25: Hard-Decision Bit Flipping: An Example
	Slide 26: Hard-Decision Bit Flipping: An Example
	Slide 27: Hard-Decision Bit Flipping: An Example
	Slide 28: Hard-Decision Bit Flipping: An Example
	Slide 29: Hard-Decision Bit Flipping: An Example
	Slide 30: Hard-Decision Bit Flipping: An Example
	Slide 31: Hard-Decision Bit Flipping
	Slide 32: Hard-Decision Bit Flipping: An Example
	Slide 33: Hard-Decision Bit Flipping: An Example

	Message-passing Algorithm
	Slide 34: Outline
	Slide 35: Soft-decision Decoder (1)
	Slide 36: Soft-decision Decoder (2)
	Slide 37: Message-passing Algorithms: q sub n , open paren x close paren (1)
	Slide 38: Message-passing Algorithms: q sub n , open paren x close paren (2)
	Slide 39: Message-passing Algorithms : r sub m n (1)
	Slide 40: Message-passing Algorithms : r sub m n (2)
	Slide 41: Message-passing Algorithms : q sub m n (1)
	Slide 42: The Relationship Between Probabilities (1)
	Slide 43: The Relationship Between Probabilities (2)
	Slide 44: Pseudocode of The Decoding Algorithm
	Slide 45: Message-passing Algorithms: An Example
	Slide 46: Example: Parity Check Matrix
	Slide 47: Initialization
	Slide 48: Iteration 1 – Check Node Update
	Slide 49: Iteration 1 – Check Node Update
	Slide 50: Iteration 1 – Check Node Update
	Slide 51: Iteration 1 – Check Node Update
	Slide 52: Iteration 1 – Check Node Update Finishes
	Slide 53: Iteration 1 – Bit Node Update
	Slide 54: Iteration 1 – Bit Node Update
	Slide 55: Iteration 1 – Bit Node Update
	Slide 56: Iteration 1 – Bit Node Update
	Slide 57: Iteration 1 – Bit Node Update Finished
	Slide 58: Iteration 1 – Compute the bold q sub n to the open paren open paren x close paren close paren
	Slide 59: Iteration 1 – Parity Check
	Slide 60: Iterative Decoding Algorithms
	Slide 61: The Limitation of Iterative Decoding
	Slide 62: The Limitation of Iterative Decoding: Example
	Slide 63: Why LDPC is good?

	Future Direction
	Slide 64: Outline
	Slide 65: Optical Satellite-Assisted Internet of Vehicles
	Slide 66: Research Direction (1)
	Slide 67: Research Direction (2)
	Slide 68: Research Plan
	Slide 69

