Introduction to Low-density Parity-check Code (LDPC)

NGUYEN Trong Cuong
Computer Communication Lab
$21^{\text {st }}$ Dec., 2022

Outline

I. Error Correction Code
II. Low-density Parity-check Codes

1. Introduction
2. Hard-Decision Bit Flipping
3. Messaging-Passing Algorithm
III. Future Direction

Outline

I. Error Correction Code
II. Low-density Parity-check Codes
1. Introduction
2. Hard-Decision Bit Flipping
3. Messaging-Passing Algorithm
III. Future Direction

Error Correction Codes

\square Error Correction Codes (ECC) are error-control methods that add redundancy
to the original message so that a certain number of errors can be corrected.

- History of ECCs

1948: Shannon published "A Mathematical Theory of Communication"
| 1954: Reed-Solomon codes
1957: Cyclic codes
1962: LDPC codes
1993: Turbo codes
2009: Polar codes
1960: BCH codes
1955: Convolutional codes
1950: Hamming codes

ECCs in the Past	
-	Hardware limitations
-	Hard-decision decoder
-	Convolutional codes are most
efficient but have high	
decoding complexity.	
-	Other common codes are
Reed-Solomon, BCH,..	

ECCs in Recent Standards

- Turbo codes: 3G UMTS, 4G LTE
- LDPC: WiFi, WiMax, 10G Base-T Ethernet, 5G New Radio (data channel)
- Polar codes: 5G New Radio (control channel)

Future Requirements of ECCs

To enhance user experience and support diverse applications, ECCs needs

- Higher error correction capability
- Lower computational complexity
- Wide range support of different code rate with compatibility.

Classifications of ECC

DError Correction Codes (ECC) can be classified into block code and convolutional code.

\square Work on fixed-size blocks of bits or symbols
(+) Best for burst sources
(+) Decoding complexity is simpler than the convolutional code
\square E.g., Reed-Solomon code, which is used in compact disc, DVD,...

\square Work on bit streams of arbitrary length
(+) Best for very large data streams
(-) Decoding complexity increases exponentially in the code length
\square Digital video, radio, and satellite communication
 matrix

Linear Block Code

A (N, K) binary block code \mathcal{C} is a set of 2^{K} vectors of length N.

- Each vector is called a codeword.
- Each codewords has N bits.

Example: All the codewords of the Hamming block code $(7,4)$ \Rightarrow There are $2^{4}=16$ codewords. Each of them has 7 bits.
$[0,0,0,0,0,0,0],[1,1,0,1,0,0,0],[0,1,1,0,1,0,0],[1,0,1,1,1,0,0]$
$[0,0,1,1,0,1,0],[1,1,1,0,0,1,0],[0,1,0,1,1,1,0],[1,0,0,0,1,1,0]$
$[0,0,0,1,1,0,1],[1,1,0,0,1,0,1],[0,1,1,1,0,0,1],[1,0,1,0,0,0,1]$
$[0,0,1,0,1,1,1],[1,1,1,1,1,1,1],[0,1,0,0,0,1,1],[1,0,0,1,0,1,1]$.

An (N, K) block code \mathcal{C} is linear if and only if any linear combination of codewords is also a codeword.
\square A linear code can be described by a generator matrix G or a parity check matrix A.

Generator Matrix

\square Generator matrix G of a (N, K) block code \mathcal{C} is used to encode a K-bits message to a N-bits codeword $\mathbf{c} \in \mathcal{C}$.

$$
\mathbf{m} G=\mathbf{c}
$$

where \mathbf{m} is the $1 \times K$ message vector, G is a $K \times N$ matrix.
Example: The generator matrix G for block code $\mathcal{C}(7,4)$
Every possible message \mathbf{m} can be mapped into a codeword in \mathcal{C}

$$
\begin{aligned}
& \text { If } \mathbf{m}=[0,0,0,0] \Rightarrow \mathbf{c}=[0,0,0,0,0,0,0] \\
& \text { If } \mathbf{m}=[0,0,0,1] \Rightarrow \mathbf{c}=[0,0,0,1,1,0,1] \\
& \ldots \\
& \text { If } \mathbf{m}=[1,1,1,1] \Rightarrow \mathbf{c}=[1,0,0,1,0,1,1]
\end{aligned} \quad G=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{|l}
\hline[0,0,0,0,0,0,0],[1,1,0,1,0,0,0],[0,1,1,0,1,0,0],[1,0,1,1,1,0,0] \\
{[0,0,1,1,0,1,0],[1,1,1,0,0,1,0],[0,1,0,1,1,1,0],[1,0,0,0,1,1,0]} \\
{[0,0,0,1,1,0,1],[1,1,0,0,1,0,1],[0,1,1,1,0,0,1],[1,0,1,0,0,0,1]} \\
{[0,0,1,0,1,1,1],[1,1,1,1,1,1,1],[0,1,0,0,0,1,1],[1,0,0,1,0,1,1]}
\end{array}
$$

Parity Check Matrix

\square For every codeword $\mathbf{c} \in \mathcal{C}$, the $(N-K) \times N$ matrix A is defined as the parity check matrix for \mathcal{C} only if

$$
A \mathbf{c}^{T}=\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\cdots \\
\mathbf{a}_{M}
\end{array}\right] \mathbf{c}^{T}=\mathbf{0}^{T}
$$

where $M=N-K, z_{m}=\mathbf{a}_{m} \mathbf{c}^{T}=0$ is a parity check $(0<m \leq M)$.
\square Example: The parity check matrix A for block code $\mathcal{C}(7,4)$
For every codeword $\mathbf{c} \in \mathcal{C}, A \mathbf{c}^{T}=\mathbf{0}$.
$[0,0,0,0,0,0,0],[1,1,0,1,0,0,0],[0,1,1,0,1,0,0],[1,0,1,1,1,0,0]$
$[0,0,1,1,0,1,0],[1,1,1,0,0,1,0],[0,1,0,1,1,1,0],[1,0,0,0,1,1,0]$
$[0,0,0,1,1,0,1],[1,1,0,0,1,0,1],[0,1,1,1,0,0,1],[1,0,1,0,0,0,1]$
$[0,0,1,0,1,1,1],[1,1,1,1,1,1,1],[0,1,0,0,0,1,1],[1,0,0,1,0,1,1]$.

$$
A=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

I. Error Correction Code

II. Low-density Parity-check Codes

1. Introduction
2. Hard-Decision Bit Flipping
3. Messaging-Passing Algorithm

III. Future Direction

Low-density Parity-check Codes

\square A low-density parity check (LDPC) code is a linear block code that has a very sparse parity check matrix.

- A matrix is said to be sparse if more than half of elements are zero.

-History of LDPC codes

1948: Shannon stated the noisy-channel coding theorem
1962: Gallager introduced LDPC codes

$$
1 \text { 1995: MacKay rediscovered LDPC codes }
$$

2001: A design of LDPC code within 0.045 dB of the Shannon limit !

1982: Michel Tanner used Tanner graph
to present LDPC codes

\square Applications

- Digital Video Broadcasting - Satellite - Second Generation (DVB-S2)
- 10G Base-T Ethernet
- 802.11ax (Wifi 6)
- 5G New Radio (data channel)

Classification of LDPC

Example:

\square A regular LDPC code has a parity check matrix, whose every columns has the same number of ones and every row has the same number of ones.
$A=\left[\begin{array}{llllllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

The parity check matrix A has 4 ones each row and 2 ones each column $=>$ regular

$$
A=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

The parity check matrix A has different numbers of ones in each row $=$ > irregular

Regular LDPC

DThe column weight w_{c} is the number of 1's in each column.

- w_{c} represents the number of checks that one bits takes.

DThe row weight w_{r} is the number of 1 's in each row.

- w_{r} represents the number of bits in one check.
\square. The number of ones in $M \times N$ parity check matrix A is $M w_{r}=N w_{c}$
\Rightarrow The code rate $R=1-\frac{w_{c}}{w_{r}}$
Example: A 5×10 parity check matrix A has $w_{r}=4, w_{c}=2$
$w_{r}=4=>$ Every checks involves 4 bits.
$w_{c}=2=>$ Every bits participates in 2 checks
$A=\left[\begin{array}{ll|l|lllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ Check z_{1} involves bit $c_{4}, c_{7}, c_{8}, c_{10}$
Bit c_{3} participates in check z_{2}, z_{5}

Representation of LDPC codes (1)

\square The parity check matrix can be presented as a bipartite graph.

- A bipartite graph is a graph in which the nodes can be classified into two classes, and no edge connects two nodes from the same class.
- A Tanner graph is a bipartite graph which represents the parity check matrix of an error correcting code.
\square The nodes in the Tanner graph are partitioned into two groups, i.e., bit nodes and check nodes.
- Each bit node presents a bit in the codeword.
- Each check node presents a check.
- Each edge presents a l's in the parity check matrix.

Representation of LDPC codes (2)

Example: A 5×10 parity check matrix A has $w_{r}=4, w_{c}=2$

- $M=$ number of checks $=5$ => 5 check nodes
- $N=$ number of bits $=10=>10$ bit nodes
- Each check node connect to $w_{r}=4$ bit nodes.
- Each bit node connects to $w_{c}=2$ check nodes.

$$
\left.A=\llbracket \begin{array}{|llllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Representation of LDPC codes (3)

Example: A 5×10 parity check matrix A has $w_{r}=4, w_{c}=2$

- $M=$ number of checks $=5=>5$ check nodes
- $N=$ number of bits $=10=>10$ bit nodes
- Each check node connect to $w_{r}=4$ bit nodes.
- Each bit node connects to $w_{c}=2$ check nodes.
$\left.A=\begin{array}{llllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ \hline\end{array}\right]$

I. Error Correction Code

II. Low-density Parity-check Codes

1. Introduction
2. Hard-Decision Bit Flipping
3. Messaging-Passing Algorithm
III. Future Direction

Hard-Decision Bit Flipping

\square The basic idea of Hard-Decision Bit Flipping is the information update between check and bit nodes in each iteration.

- A check node uses the information of its bit nodes to compute the parity check.
- A bit node uses the information of its check nodes to know how many parity checks it has failed.

\square The more failed parity checks, the more likely that the bit node is wrong.
\square The Hard-Decision Bit Flipping algorithm:
Initial: Set a maximum number of iterations L. For each iteration:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of failing parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the algorithm is stopped.

Hard-Decision Bit Flipping: An Example

\square Consider an irregular parity check matrix A

Hard-Decision Bit Flipping: An Example

- Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of falling parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the algorithm is stopped.

Hard-Decision Bit Flipping: An Example

- Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of farling parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the
algorithm is stopped.

Hard-Decision Bit Flipping: An Example

- Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For the bit(s) with the largest number of failed parity checks, flip the bits.
3. Increase the iteration counter. If the maximum number of iterations is reached, the
algorithm is stopped.

Hard-Decision Bit Flipping: An Example

- Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of farling parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the
algorithm is stopped.

Hard-Decision Bit Flipping: An Example

- Iteration 1:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of farling parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the
algorithm is stopped.

Hard-Decision Bit Flipping: An Example

I Iteration 1:

Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits. 4. Increase the iteration counter. If the maximum number of iterations is reached, the algorithm is stopped.

Original bits: 0000000

Hard-Decision Bit Flipping: An Example

] Iteration 1:
Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of failing parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the algorithm is stopped.

Original bits: 0000000

Hard-Decision Bit Flipping: An Example

I Iteration 1:
Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of failing parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the algorithm is stopped.

Original bits: 0000000

Hard-Decision Bit Flipping: An Example

\square Iteration 2:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of failing parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the
algorithm is stopped.

Hard-Decision Bit Flipping: An Example

- Iteration 2:

2. For each bit, count the number of failing parity checks.

3. For the bit(s) with the largest number of failed parity checks, flip the bits.
 4. Increase the iteration counter. If the maximum number of iterations is reached, the algorithm is stopped.

Original bits: 0000000

Hard-Decision Bit Flipping: An Example

] Iteration 2:
Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of failing parity checks
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the algorithm is stopped.

Original bits: 0000000

Hard-Decision Bit Flipping

- Iteration 2:

Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of failing parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits
4. Increase the iteration counter. If the maximum number of iterations is reached, the algorithm is stopped.

Original bits: 0000000

Hard-Decision Bit Flipping: An Example

- Iteration 3:

1. Compute each parity check. If all the parity checks are satisfied, the algorithm is stopped.
2. For each bit, count the number of failing parity checks.
3. For the bit(s) with the largest number of failed parity checks, flip the bits.
4. Increase the iteration counter. If the maximum number of iterations is reached, the algorithm is stopped.

Hard-Decision Bit Flipping: An Example

The received codeword is recovered successfully
Original bits: 0000000

Received bits: $0 \underline{1} 00 \underline{1} 00$

Recovered bits: 0000000
Failed parity check
Successful parity check

Outline

I. Error Correction Code

II. Low-density Parity-check Codes

1. Introduction
2. Hard-Decision Bit Flipping
3. Messaging-Passing Algorithm
III. Future Direction

Soft-decision Decoder (1)

The basic idea of Hard-Decision Bit Flipping is the information update between check and bit nodes in each iteration.
\square Message-passing Algorithm is based on this idea but for soft-decision decoding.
\square Hard-decision decoder operates on data that take on a fixed set of possible values (commonly 0 and 1).

- In real life, the received signal is fluctuating
- Treats the different signal levels as the same value
\square Soft-decision decoder takes on a whole range of values in between.
- Uses the information from the physical layer to "helps" the decoder make the decision better.

Soft-decision Decoder (2)

The message-passing algorithm considers the channel posterior probability.

- Measure the "certainty" of bit c_{n} given the observation of the received signal, \mathbf{r}.

Example: For binary phase-shift Keying (BPSK) modulation, the channel posterior probability is given as

$$
p_{n}(x)=P\left(c_{n}=x \mid \mathbf{r}\right)=\frac{1}{1+e^{-2 a r_{n} / \sigma^{2}}}
$$

Message-passing Algorithms: $q_{n}(x)(1)$

Target of the algorithm: The decoder tries to evaluate the probabilities

$$
q_{n}(x)=P\left(c_{n}=x \mid \mathbf{r},\left\{z_{m}=0, \mathrm{~m} \in \mathcal{M} \mathcal{M}_{n}\right\}\right)
$$

where \mathcal{M}_{n} is the set of checks in which bit c_{n} participates
$c_{n}: n^{\text {th }}$ bit
$z_{m}: m^{\text {th }}$ check

$$
\mathcal{M}_{n}=\left\{m: A_{m n}=1\right\}
$$

$\square q_{n}(0)+q_{n}(1)=1$
\square Presents the probability that bit $c_{n}=x$ given the observation of received signal and all checks involving c_{n} are satisfied.
\square The higher $q_{n}(x)$, the more likely that $c_{n}=x$.

Message-passing Algorithms: $q_{n}(x)(2)$

How to compute $q_{n}(x)$?

$$
q_{n}(x)=\frac{p_{n}(x) \prod_{m \in \mathcal{M}_{n}} P\left(z_{m}=0 \mid c_{n}=x, \mathbf{r}\right)}{\sum_{x^{\prime} \in\{0,1\}} p_{n}\left(x^{\prime}\right) \prod_{m \in \mathcal{M}_{n}} P\left(z_{m}=0 \mid c_{n}=x^{\prime}, \mathbf{r}\right)}
$$

$p_{n}(x)$: the posterior probability
$\square r_{m n}(x)=P\left(z_{m}=0 \mid c_{n}=x, \mathbf{r}\right)$ presents the probability that check node z_{m} is satisfied given $c_{n}=x$.
\Rightarrow To compute the probability $q_{n}(x)$, bit node c_{n} will use $r_{m n}(x)$ from its involving check nodes.

Message-passing Algorithms : $r_{m n}(1)$

How to compute $r_{m n}$?

$$
r_{m n}(x)=\sum_{\left\{c_{n^{\prime}}\right\}} P\left(z_{m}=0 \mid c_{n}=x,\left\{c_{n^{\prime}}\right\}\right) \prod_{n^{\prime}} q_{m n^{\prime}}\left(c_{n^{\prime}}\right) \quad n^{\prime} \in \mathcal{N}(m) \backslash n
$$

where

$$
\begin{aligned}
& \text { E.g., } \mathcal{N}_{1} \\
& \mathcal{N}_{1} \backslash 1=\{1,2,3,6,7,10\} \\
&
\end{aligned}
$$

- \mathcal{N}_{m} is the set of bits in which check z_{m} participates

$$
\mathcal{N}_{m}=\left\{n: A_{m n}=1\right\}
$$

- $\mathcal{N}_{m} \backslash n$ is the set of bits in which check z_{m} participates, excluding bit c_{n}
$=>r_{m n}(x)$ is computed based on bit nodes that z_{m} participates excluding c_{n}.

Message-passing Algorithms : $r_{m n}(2)$

How to compute $r_{m n}$?

$$
r_{m n}(x)=\sum_{\left\{c_{n^{\prime}}\right\}} \underbrace{P\left(z_{m}=0 \mid c_{n}=x,\left\{c_{n^{\prime}}\right\}\right)} \prod_{n^{\prime}} q_{m n^{\prime}}\left(c_{n^{\prime}}\right) \quad n^{\prime} \in \mathcal{N}(m) \backslash n
$$

$\square\left\{c_{n^{\prime}}\right\}$ is set of bit node $c_{n^{\prime}}$ with $n^{\prime} \in \mathcal{N}_{m} \backslash n$
\circ E.g., $n=1,\left\{c_{n^{\prime}}\right\}=\left\{c_{2}, c_{3}, c_{6}, c_{7}, c_{10}\right\}$

- This set ranges from $\{0,0,0,0,0\}$ to $\{1,1,1,1,1\}$
\square The probability $z_{m}=0$ given the value of c_{n} and the $\left\{c_{n^{\prime}}\right\}$ is either 0 or 1 .

Message-passing Algorithms : $q_{m n}(1)$

How to compute $q_{m n}$?
$\square q_{m n}(x)$ presents the probability that bit $c_{n}=x$ given all checks involving c_{n}, excluding z_{m}, are satisfied.
\Rightarrow Similar to $q_{n}(x), q_{m n}(x)$ can be expressed as

$$
q_{m n}(x)=\frac{p_{n}(x) \prod_{m^{\prime} \in \mathcal{M}_{n} \backslash m} r_{m^{\prime} n}}{\sum_{x^{\prime} \in\{0,1\}} p_{n}\left(x^{\prime}\right) \prod_{m^{\prime} \in \mathcal{M}_{n} \backslash m} r_{m^{\prime} n}}
$$

where $\mathcal{M}_{n} \backslash m$ is the set of checks in which bit c_{n} participates, excluding z_{m}.

The Relationship Between Probabilities (1)

\square Target of the algorithm: The decoder tries to evaluate the probabilities

$$
q_{n}(x)=P\left(c_{n}=x \mid \mathbf{r}, \text { all checks involving } \mathrm{c}_{\mathrm{n}} \text { are satisfied }\right)
$$

$\square q_{n}(x)$ is computed based on $r_{m n}(x), m \in \mathcal{M}_{n}$

$$
r_{m n}(x)=P\left(z_{m}=0 \mid c_{n}=x, \mathbf{r}\right)
$$

- $r_{m n}(x)$ is computed based on $q_{m n^{\prime}}(x), n^{\prime} \in \mathcal{N}_{m} \backslash n$
$q_{m n}(x)=P\left(c_{n}=x \mid \mathbf{r}\right.$, all checks, except z_{m}, involving c_{n} are satisfied $)$

$\square \mathbf{q}_{\mathrm{n}}^{(x)}$ represents a $N \times 1$ vector, in which the element in the position n is the probability $q_{n}(x)$.
$\mathbf{r}_{\mathrm{mn}}^{(x)}$ represents a $M \times N$ matrix, in which the element in the position (m, n) is the probability $r_{m n}(x)$.
- $0<m<M, 0<n<N$
$\square \mathbf{q}_{\mathrm{mn}}^{(x)}$ represents a $M \times N$ matrix, in which the element in the position (m, n) is the probability $q_{m n}(x)$.

○ $0<m<M, 0<n<N$

Pseudocode of The Decoding Algorithm

Input: The parity check matrix A, the maximum number of iterations L and the channel posterior probabilities $p_{n}(x)$.
Initialization: Set $q_{m n}(x)=p_{n}(x)$ for all (m, n) with $A(m, n)=1$.
For each iteration:
\# Check node update:
Update $\mathbf{r}_{\mathrm{mn}}^{(x)}$ by the value of $\mathbf{q}_{\mathrm{mn}}^{(x)}$.
\# Bit node update:
Update $\mathbf{q}_{\mathrm{mn}}^{(x)}$ by the value of $\mathbf{r}_{\mathrm{mn}}^{(x)}$.
\# Parity check:
Update $\mathbf{q}_{\mathrm{n}}^{(x)}$ by the value of $\mathbf{r}_{\mathrm{mn}}^{(x)}$.
For each elements in $\mathbf{q}_{\mathrm{n}}^{(x)}$:

$$
\text { If } q_{n}(x)>0.5: \operatorname{set} \hat{\boldsymbol{c}}_{n}=x
$$

If $A \hat{\boldsymbol{c}}=0$: break;

Message-passing Algorithms: An Example

\square Example: Consider the system with the original message

$$
\mathbf{m}=\left[\begin{array}{lll}
1 & 0 & 1 \tag{0}
\end{array}\right.
$$

\square The BPSK is used with the amplitude $a=2$, the noise variance $\sigma^{2}=2$.

$$
\begin{aligned}
& \mathbf{c}=\left(\begin{array}{cccccccccc}
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \\
& \mathbf{t}=\left(\begin{array}{ccccccccc}
-2 & -2 & -2 & 2 & -2 & 2 & -2 & 2 & -2 \\
2
\end{array}\right) \\
& \mathbf{r}=\left[\begin{array}{cccccccc}
-0.63 & -0.83 & -0.73 & -0.04 & 0.1 & 0.95 & -0.76 & 0.66 \\
-0.55 & 0.58 \\
0 & 0 & 0 & \underline{0} & \underline{1} & 1 & 0 & 1
\end{array} 0\right. \\
& \mathbf{c}=(
\end{aligned}
$$

Example: Parity Check Matrix

\square The parity check matrix A is given as follows.
\square It should be noted that the matrix A is not sparse. However, it is used in the example for illustrative purposes.

$$
A=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Initialization

The channel posterior probabilities are

$$
\begin{aligned}
p_{n}(x) & =\left[\begin{array}{cccccccccc}
0.22 & 0.16 & 0.19 & 0.48 & 0.55 & 0.87 & 0.18 & 0.79 & 0.25 & 0.76 \\
\mathbf{q}_{m n}^{(1)} & =\left(\begin{array}{cccccccccc}
0.22 & 0.16 & 0.19 & 0 & 0 & 0.87 & 0.18 & 0 & 0 & 0.76 \\
0.22 & 0 & 0.19 & 0 & 0.55 & 0.87 & 0 & 0.79 & 0.25 & 0 \\
0 & 0 & 0.19 & 0.48 & 0.55 & 0 & 0.18 & 0 & 0.25 & 0.76 \\
0 & 0.16 & 0 & 0.48 & 0.55 & 0.87 & 0 & 0.79 & 0 & 0.76 \\
0.22 & 0.16 & 0 & 0.48 & 0 & 0 & 0.18 & 0.79 & 0.25 & 0
\end{array}\right) \\
\mathbf{r}_{m n}^{(1)} & =\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right. \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$\mathbf{r}_{m n}^{(1)}=\left(\begin{array}{cccccccccc}0.45 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Update $r_{11}(1)$ based on $q_{12}(1), q_{13}(1), q_{16}(1), q_{17}(1)$, and $q_{1,10}(1)$

$\mathbf{r}_{m n}^{(1)}=\left(\begin{array}{cccccccccc}0.45 & 0.46 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Update $r_{12}(1)$ based on $q_{11}(1), q_{13}(1), q_{16}(1), q_{17}(1)$, and $q_{1,10}(1)$

$\mathbf{r}_{m n}^{(1)}=\left(\begin{array}{cccccccccc}0.45 & 0.46 & 0.45 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Update $r_{13}(1)$ based on $q_{11}(1), q_{12}(1), q_{16}(1), q_{17}(1)$, and $q_{1,10}(1)$

Iteration 1 - Check Node Update

$$
\mathbf{r}_{m n}^{(1)}=\left(\begin{array}{cccccccccc}
0.45 & 0.46 & 0.45 & 0 & 0 & 0.54 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The procedure continues until all the check nodes are updated.

$$
\mathbf{r}_{m n}^{(1)}=\left(\begin{array}{cccccccccc}
0.45 & 0.46 & 0.45 & 0 & 0 & 0.54 & 0.45 & 0 & 0 & 0.56 \\
0.51 & 0 & 0.51 & 0 & 0.46 & 0.49 & 0 & 0.49 & 0.51 & 0 \\
0 & 0 & 0.5 & 0.49 & 0.5 & 0 & 0.5 & 0 & 0.5 & 0.5 \\
0 & 0.5 & 0 & 0.49 & 0.5 & 0.5 & 0 & 0.5 & 0 & 0.5 \\
0.5 & 0.5 & 0 & 0.54 & 0 & 0 & 0.5 & 0.5 & 0.5 & 0
\end{array}\right)
$$

Iteration 1 - Bit Node Update

$$
\mathbf{q}_{m n}^{(1)}=\left(\begin{array}{cccccccccc}
0.22 & 0.16 & 0.19 & 0 & 0 & 0.87 & 0.18 & 0 & 0 & 0.76 \\
0.22 & 0 & 0.19 & 0 & 0.55 & 0.87 & 0 & 0.79 & 0.25 & 0 \\
0 & 0 & 0.19 & 0.48 & 0.55 & 0 & 0.18 & 0 & 0.25 & 0.76 \\
0 & 0.16 & 0 & 0.48 & 0.55 & 0.87 & 0 & 0.79 & 0 & 0.76 \\
0.22 & 0.16 & 0 & 0.48 & 0 & 0 & 0.18 & 0.79 & 0.25 & 0
\end{array}\right)
$$

Iteration 1 - Bit Node Update

$$
\mathbf{q}_{m n}^{(1)}=\left(\begin{array}{cccccccccc}
\hline 0.23 & 0.16 & 0.19 & 0 & 0 & 0.87 & 0.18 & 0 & 0 & 0.76 \\
0.22 & 0 & 0.19 & 0 & 0.55 & 0.87 & 0 & 0.79 & 0.25 & 0 \\
0 & 0 & 0.19 & 0.48 & 0.55 & 0 & 0.18 & 0 & 0.25 & 0.76 \\
0 & 0.16 & 0 & 0.48 & 0.55 & 0.87 & 0 & 0.79 & 0 & 0.76 \\
0.22 & 0.16 & 0 & 0.48 & 0 & 0 & 0.18 & 0.79 & 0.25 & 0
\end{array}\right)
$$

Update $q_{11}(1)$ based on $r_{21}(1), r_{51}(1)$.

Iteration 1 - Bit Node Update

$$
\mathbf{q}_{m n}^{(1)}=\left(\begin{array}{cccccccccc}
0.23 & 0.16 & 0.19 & 0 & 0 & 0.87 & 0.18 & 0 & 0 & 0.76 \\
\hline 0.19 & 0 & 0.19 & 0 & 0.55 & 0.87 & 0 & 0.79 & 0.25 & 0 \\
0 & 0 & 0.19 & 0.48 & 0.55 & 0 & 0.18 & 0 & 0.25 & 0.76 \\
0 & 0.16 & 0 & 0.48 & 0.55 & 0.87 & 0 & 0.79 & 0 & 0.76 \\
0.22 & 0.16 & 0 & 0.48 & 0 & 0 & 0.18 & 0.79 & 0.25 & 0
\end{array}\right)
$$

Update $q_{21}(1)$ based on $r_{11}(1), r_{51}(1)$.

Iteration 1 - Bit Node Update

$$
\mathbf{q}_{m n}^{(1)}=\left[\begin{array}{cccccccccc}
0.23 & 0.16 & 0.19 & 0 & 0 & 0.87 & 0.18 & 0 & 0 & 0.76 \\
0.19 & 0 & 0.19 & 0 & 0.55 & 0.87 & 0 & 0.79 & 0.25 & 0 \\
0 & 0 & 0.19 & 0.48 & 0.55 & 0 & 0.18 & 0 & 0.25 & 0.76 \\
0 & 0.16 & 0 & 0.48 & 0.55 & 0.87 & 0 & 0.79 & 0 & 0.76 \\
0.19 & 0.16 & 0 & 0.48 & 0 & 0 & 0.18 & 0.79 & 0.25 & 0
\end{array}\right]
$$

Update $q_{51}(1)$ based on $r_{11}(1), r_{21}(1)$. The procedures finished until all the bit nodes are updated.

Iteration 1 - Bit Node Update Finished

$$
\mathbf{q}_{m n}^{(1)}=\left(\begin{array}{cccccccccc}
0.23 & 0.16 & 0.19 & 0 & 0 & 0.87 & 0.18 & 0 & 0 & 0.76 \\
0.19 & 0 & 0.16 & 0 & 0.56 & 0.89 & 0 & 0.79 & 0.25 & 0 \\
0 & 0 & 0.17 & 0.51 & 0.52 & 0 & 0.16 & 0 & 0.26 & 0.8 \\
0 & 0.14 & 0 & 0.51 & 0.51 & 0.88 & 0 & 0.78 & 0 & 0.8 \\
0.19 & 0.14 & 0 & 0.47 & 0 & 0 & 0.15 & 0.79 & 0.26 & 0
\end{array}\right)
$$

Iteration 1 - Compute the $\mathbf{q}_{\mathbf{n}}^{(x)}$

$$
\mathbf{r}_{m n}^{(1)}=\left[\begin{array}{cccccccccc}
0.45 & 0.46 & 0.45 & 0 & 0 & 0.54 & 0.45 & 0 & 0 & 0.56 \\
\cline { 1 - 4 } 0.51 & 0 & 0.51 & 0 & 0.46 & 0.49 & 0 & 0.49 & 0.51 & 0 \\
0 & 0 & 0.5 & 0.49 & 0.5 & 0 & 0.5 & 0 & 0.5 & 0.5 \\
0 & 0.5 & 0 & 0.49 & 0.5 & 0.5 & 0 & 0.5 & 0 & 0.5 \\
0.5 & 0.5 & 0 & 0.54 & 0 & 0 & 0.5 & 0.5 & 0.5 & 0
\end{array}\right]
$$

Compute $q_{1}(1)$ based on $r_{11}(1), r_{21}(1)$ and $r_{51}(1)$. The procedures finished until all the bit nodes are updated.

Iteration 1 - Parity Check

- We have

$$
\mathbf{q}_{\mathrm{n}}^{(x)}=\left[\begin{array}{llllllllll}
0.19 & 0.14 & 0.17 & 0.5 & 0.52 & 0.88 & 0.16 & 0.78 & 0.26 & 0.8
\end{array}\right]
$$

The estimated codeword is
$\hat{\mathbf{c}}=\left(\begin{array}{llllllllll}0 & 0 & 0 & 1 & \underline{1} & 1 & 0 & 1 & 0 & 1\end{array}\right)$
\square The estimated codeword is failed the parity check. The procedure is repeated in the next iteration.
\square After two more iterations, the estimated codeword is corrected.

Iteration 1:

$$
\hat{\mathbf{c}}=\left(\begin{array}{llllllllll}
0 & 0 & 0 & 1 & \underline{1} & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Iteration 2:

$$
\hat{\mathbf{c}}=\left(\begin{array}{llllllllll}
0 & 0 & 0 & 1 & \underline{1} & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Iteration 3:

$$
\hat{\mathbf{c}}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
\text { => Decoding successfully }
\end{array}\right.
$$

Iterative Decoding Algorithms

\square Example: Consider the decoding process of an LDPC code with $R=1 / 2$, 10000×20000 parity check matrix, column weight $w_{c}=3$, row weight $w_{r}=6(*)$.

The codeword is gradually corrected after each iteration.

The Limitation of Iterative Decoding

\square The performance of iterative decoding algorithms is affected by the presence of cycles in the Tanner graph.

- A cycle of length L in a Tanner graph is a path of L edges that closes back on itself.
- Girth is the shortest cycle in the bipartite graph.
\square Cycles increase the dependence of information being received at each node during message passing.
\square Due to the presence of cycles, the results are only approximate.
- The algorithm may take more iterations to decode successfully
- Or the codeword can not even be decoded successfully

It is important to reduce the number of cycles in the parity check matrix.

$$
A=\left[\begin{array}{ccccccccc}
11--(1) & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\vdots & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
\$ & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Why LDPC is good?

\square According to Shannon's theorem of noise-channel coding, for a given rate $R \leq C$, there exists an ECC of length N such that the reliable transmission over a noisy channel can be obtained as N increases.

- E.g., Random codes proposed by Shannon, convolutional codes
\square However, the decoding complexity of these codes grows exponentially with the codewords length N.
\square For LDPC codes, as fixed value of w_{c} and w_{r}, the complexity of iterative decoding grows linearly when N increases.

The spareness of LDPC codes contributes to the good performance and linear decoding complexity.

The comparison of Turbo, LDPC and polar decoders implemented on the application-specific integrated circuit (ASIC) drawn from over 100 papers [1]

Parameter	Turbo decoder	LDPC Decoder	Polar Decoder
Computational complexity	Higher for most coding rates. Low at low coding rates	Lower for most coding rates. High at low coding rates	Lower for most coding rates
Information throughput	Low. Enhanced by fully- parallel structure	High for high coding rates and parallel structure	High for pipeline structure
Area efficiency	Low for most coding rate. High at low coding rates.	High for most coding rates. Low at low coding rates.	High for most coding rates.
Energy efficiency	Low for most coding rates. High at low coding rates.	High for most coding rate. Low at low coding rates.	High for most coding rates.
Error correction perfor- mance	Similar at long block lengths.	Similar at long block lengths.	Superior for short block len- gths.
Flexibility	High flexibility	Partial flexibility	Very high potential

Codewords length
[1] S. Shao et al., "Survey of turbo, LDPC, and polar decoder ASIC implementations," IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 23092333, 3rd Quart., 2019.

Outline

I. Error Correction Code
II. Low-density Parity-check Codes
1. Introduction
2. Hard-Decision Bit Flipping
3. Messaging-Passing Algorithm

III. Future Direction

Optical Satellite-Assisted Internet of Vehicles

\square Internet of Vehicles (IoVs) is defined as a network of users, vehicles, and network infrastructure to connect and exchange data over the Internet

\square Applications

- Safety: emergency call, speed control,...
- Navigation: traffic congestion control, realtime information, parking helper,...
- Business: high-speed Internet for vehicles, entertainment,...
\square To enable more applications and increase the quality of service for the IoVs, optical satellite systems are proposed.

\square Optical Satellite-Assisted IoVs

- Uses infrared frequency bands (180-400 Thz) to transmit data in free space
\Rightarrow Offer extremely high data rate (\sim Gbps or even Tbps)
- Use low-earth orbit (LEO) satellites
\Rightarrow Offer global coverage
\square Challenging issue: Uncertainty channel

Vehicles in Disaster Areas

Self-driving car

High-Speed Train

Research Direction (1)

\square Why should we have new designs of error-control methods for optical satellite system?

Due to the different frequency bands, the optical satellite communication is different from the radio frequency $(R F)$-based satellite communication.

- E.g., the data rate and coherent time of the optical channel are much higher => The usage of burst transmission is much preferable $=>$ The ability to encode and correct long block codes in a low time manner.
- The optical link is deteriorated significantly by the atmosphere => The methods to cope with the new degrading factor.
\Rightarrow The design of error-control methods for RF-based satellite systems may not inefficient for the optical satellite system.
It is worth to reconsidering the new design of error-control methods for optical satellite systems.

\square What is the proposed design for optical satellite-assisted IoVs?

1. Hybrid ARQ (HARQ) Incremental Redundancy (IR) is taken into account

- In HARQ-IR, redundancy is transmitted whenever it is necessary and increases after each retransmission.
- Compared to standalone ARQ, HARQ-IR reduces the frequency of retransmissions, especially in long-distance communication.
- Compared to standalone ECCs, HARQ-IR increases the throughput efficiency as redundancy is transmitted whenever it is necessary.

2. Rate-compatible Puncturing (RP) LDPC codes are taken into account

- LDPC codes have high performance and linear decoding complexity for very long block code. => Suitable for high-speed transmission over noisy channels
- LDPC decoders implemented on ASICs show outstanding performance in terms of throughput, size and energy consumption => Suitable for communications in IoVs
- Rate-compatible Puncturing is the process of creating higher code rates from a lower mother code rate without changing their structure. => Work with HARQ-IR to increase the performance

Research Direction: Propose a design of RP-LDPC-based HARQ-IR for the optical satellite-assisted IoVs systems.

Research Plan

Thank you for your attention

The material and examples in this slide are adopted from
[1] "Error Correction Coding: Mathematical Methods and Algorithms" by Todd K. Moon
[2] "Information Theory, Inference and Learning Algorithms" by David J. C. MacKay
[3] "Introduction to Low-Density Parity Check Codes" slide by Brian Kurkoski

