Performance of IR-HARQ-based LDPC Extension Codes in Optical Satellite Systems

NGUYEN Trong Cuong

Computer Communication Lab., The University of Aizu, Japan

May 10th, 2023

Cuong Nguyen	(CCL, UoA)
--------------	------------

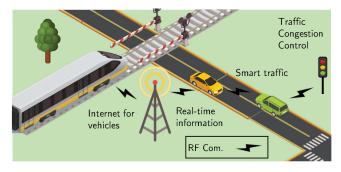
IR-HARQ-based RC-LDPC Code Extension

Outline

I. Introduction

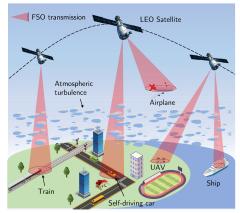
II. System Description

III. Results & Discussions


イロン イロン イヨン イヨン

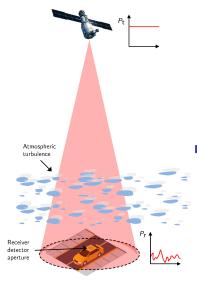
2

Internet of Vehicles (IoVs)


Internet of Vehicles (IoVs): The network of vehicles and related entities

- The current network supporting IoV may face two limitations
- 1. Radio-frequency (RF) spectrum scarcity ⇒ Restricted data rate (Mbps or lower)
- 2. Limited coverage of terrestrial infrastructure \implies Cannot enable ubiquitous connections

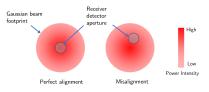
Optical Satellite-Assisted IoV


- 1. Data rate solution: Free-space Optical (FSO) Commun.
 - Infrared wavelength (700-1600 nm)
 - Higher data rate (~ Gbps or even Tbps) thanks to a vast range of unlicensed bandwidth
- 2. **Coverage solution:** Low-earth orbits (LEO) Satellites
 - Altitude: \leq 2000km
 - Low latency compared to other types of satellites
 - Global coverage

Optical LEO-satellite communication is promised to become an enabling technology for the future applications of the loVs.

May 10th, 2023

Challenging Issues: Unreliable Transmission


Atmospheric Turbulence

Cause: Inhomogeneity in refractive-index along the propagation path of the optical signal

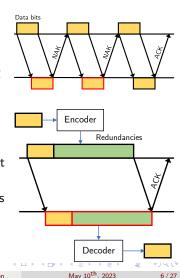
2. Pointing Misalignment

Cause: Misalignment between the center of the beam footprint and the center of the receiver detector

The power of the received signal is strongly fluctuated, which results in unreliable transmission.

< ロ > < 同 > < 回 > < 回 >

5/27

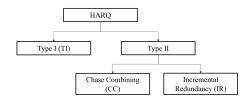

Possible Solutions: Reliable Trans. Protocols

Possible solutions: Automatic Repeat Request (ARQ), Error Correction Code (ECC), and Hybrid ARQ

- 1. Automatic Repeat Request (ARQ):
- Retransmit frame when it is erroneous
- May not be efficient as it requires many retransmissions when the channel is deep fading
 High latency

2. Error Correction Code (ECC):

- Add redundancy to correct a number of errors at the receiver
- May not be efficient as the redundancy is always transmitted Lower throughput when the channel condition is good



Possible Solutions: Reliable Trans. Protocols (Cont.)

3. Hybrid ARQ: Combination of ARQ and ECC

Type-I (TI)-HARQ:

 Transmit the same encoded frame every round

Chase Combining (CC)-HARQ:

 Combining a number of encoded frames in a single frame based on a maximum likelihood criterion

Disadvantages: TI- and CC-HARQ transmit encoded frames every round \implies Lower throughput when the channel condition is good **Incremental Redundancy (IR)-HARQ**:

Transmits redundancy when data frame gets errors

IR-HARQ is a potential candidate for the reliable transmission issue of the considered system.

イロト イヨト イヨト

Literature Review

Currently, there have been some studies addressing the HARQ design for optical satellite systems [1-3].

Error-correction codes of these designs focus on **convolutional code** and **Reed-Solomon code**. **Convolutional code**:

- Work on a continuous stream of data bits
- Use the Viterbi algorithm to decode

Reed-Solomon code:

- Symbol-based error correction code
- Constructed based on the theory of Galois fields

[1] Hung D. Nguyen *at el*, "Throughput and delay performance of cooperative HARQ in satellite-HAP vehicle FSO systems," in *Proc. IEEE Veh. Technol. Conf.*, 2021.

[2] Hoang D. Le *at el*, "On the design of FSO-based satellite systems using incremental redundancy hybrid ARQ protocols with rate adaptation," *IEEE Trans. Veh. Technol.*, 2022.

[3] Hoang D. Le *at el*, "Fso-based space-air-ground integrated vehicular networks: Cooperative harq with rate adaptation," *IEEE Trans. Aerosp. Electron. Syst.*, 2023.

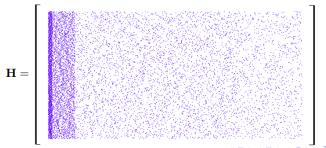
イロト イボト イヨト イヨト

One property of the considered system is the preference for long data frames

 \blacksquare Effectively make use of high data rate (\sim Gbps) and long coherent time (in order of milliseconds)

However, the ECCs of the current designs may not be efficient when the data frame is long

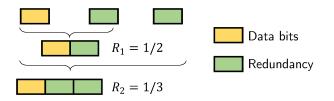
- Convolutional Code: Long data frames result in exponentially increasing complexity of Viterbi decoder
- Reed-Solomon Code: Long Reed-Solomon codes implemented on a large-size Galois field may be infeasible due to the high complexity


It is necessary to have a design of proper ECC

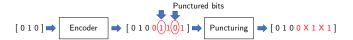
Low-density Parity Check (LDPC) Code

Low-density Parity Check (LDPC) code, which is a class of linear block code with sparse parity check matrix, *show great advantages in long frame length regimes.*

- When the frame length increases, the performance of the LDPC code can *approach Shanon's theoretical limit.*
- Thanks to the spare parity check matrix, it can retain *low decoding* complexity when the frame length increases.


LDPC code is a potential candidate for considered systems.

Rate-compatible (RC)-LDPC Code Family (1)


To facilitate the operation of the IR-HARQ, we consider **rate-compatible (RC)-LDPC** code.

- A high code rates are nested in a lower code rate ⇒ A low-rate coded frame can be constructed by adding redundancy to a higher-rate coded frame
- \blacksquare Allow the change of code rates with only one pair of encoder/decoder \implies Reduce complexity

Rate-compatible (RC)-LDPC Code Family (2)

1. **Puncturing**: Selected bits are removed from an encoded frame to obtain a frame with a higher code rate

Limitation: Performance degradation of higher-rate codes

2. **Code extension**: Extend the parity check matrix of a higher-rate code to obtain that of lower-rate codes

$$H_{1/3} =$$
 0

Motivations

One of the challenging issues in optical satellite systems is the unreliable downlink channel.

 \implies IR-HARQ may offer better performance compared to ARQ and ECC for the desired system.

 Convolutional code and Reed-Solomon codes applied in the current design may not be efficient.

 \implies LDPC code, which has not been considered in the literature, is a potential solution for the design of IR-HARQ in such systems.

To support the IR-HARQ, a proper design of the RC-LDPC code family is necessary.
The RC-LDPC code family derived by code extension is a more suitable approach compared to the one by the puncturing method.

The IR-HARQ-based RC-LDPC code extension is a promising candidate for optical satellite systems.

- 1. We consider a design of the IR-HARQ-based LDPC code extension for optical satellite-aided IoV systems.
- 2. We study the performance of the design in terms of goodput and energy efficiency.
- 3. From the obtained results, we discuss the selection of a proper transmitted power

Outline

I. Introduction

II. System Description

III. Results & Discussions

Cuong Nguyen (CCL, UoA)

IR-HARQ-based RC-LDPC Code Extension

< □ > < □ > < □ > < □ > < □ >

2

System Model

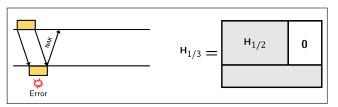
System model: Optical downlink channel from an LEO satellite to a ground vehicle

FSO Channel Model:

- Turbulence Fading
- Turbulence Attenuation
- Pointing error

Pointing Error Model:

- The vibration of the satellite
- The sudden change in vehicle's velocity over a short period of time

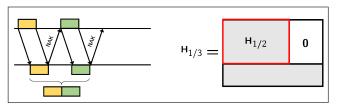

Considered Link-layer Solution: IR-HARQ based on RC-LDPC Code Extension

IR-HARQ based on RC-LDPC Code Extension

Operation Description

- RC-LDPC code family includes N_r code rates: $C_1 > C_2 > ... > C_{N_r}$
- $N_{\rm r}$ is also the number of operated rounds of the IR-HARQ
- First round is the transmission of an LDPC-coded frame of rate C_1
- Subsequent round is the transmission of a frame with only redundancy
- This redundancy is combined with the received frame(s) to form a new frame of rate $C_2 > ... > C_{N_r}$

Example: A systematic RC-LDPC code family (1, 1/2, 1/3)

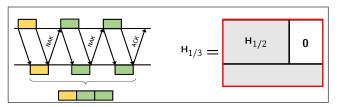


IR-HARQ based on RC-LDPC Code Extension

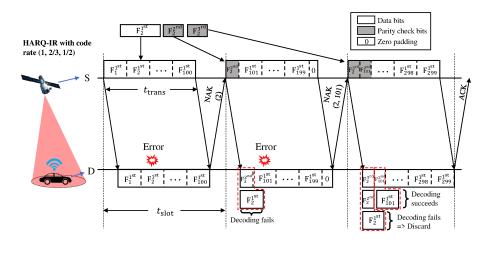
Operation Description

- RC-LDPC code family includes N_r code rates: $C_1 > C_2 > ... > C_{N_r}$
- $N_{\rm r}$ is also the number of operated rounds of the IR-HARQ
- \blacksquare First round is the transmission of an LDPC-coded frame of rate C_1
- Subsequent round is the transmission of a frame with only redundancy
- This redundancy is combined with the received frame(s) to form a new frame of rate $C_2 > ... > C_{N_r}$

Example: A systematic RC-LDPC code family (1, 1/2, 1/3)



IR-HARQ based on RC-LDPC Code Extension


Operation Description

- RC-LDPC code family includes N_r code rates: $C_1 > C_2 > ... > C_{N_r}$
- $N_{\rm r}$ is also the number of operated rounds of the IR-HARQ
- First round is the transmission of an LDPC-coded frame of rate C_1
- Subsequent round is the transmission of a frame with only redundancy
- This redundancy is combined with the received frame(s) to form a new frame of rate $C_2 > ... > C_{N_r}$

Example: A systematic RC-LDPC code family (1, 1/2, 1/3)

An Example of Data Transmission in the Considered System

イロト イヨト イヨト

20 / 27

I. Introduction

II. System Description

III. Results & Discussions

イロン イロン イヨン イヨン

2

System Parameters

Name	Symbol	Value
LEO Satellite Parameters		
LEO satellite altitude	H_s	500 km
Zenith angle	ξ	30°
Divergence half-angle	θ	$20 \ \mu$ rad
Bit rate	R_{b}	1 Gbps
Burst duration	$t_{\sf burst}$	6 ms
Optical wavelength	λ	$1550 \ {\sf nm}$
Jitter angle	θ_{jt}	$2 \ \mu$ rad
Vehicle Parameters		
Vehicle altitude	H_v	1.5 m
Aperture radius	r_{a}	5 cm
Noise standard deviation	$\sigma_{\sf n}$	10^{-7} A/Hz
Detector responsivity	\mathfrak{R}	0.9
Standard deviation of the velocity variation	σ_{v}	4 m/s
Other Parameters		
Atmospheric altitude	H_{a}	20 km
Rms wind speed	$w_{\sf wind}$	21 m/s
Ground turbulence level	$C_{n}^{2}\left(0 ight)$	$10^{-14} {\rm m}^{-2/3}$

Table: System Parameters

2

Goodput: The successfully transmitted data bits per second

$$\mathsf{Goodput} = \frac{\# \text{ of successfully transmitted data bits}}{\mathsf{Simulated time}}$$

Energy Efficiency: The successfully transmitted data bits per joule

$$\mathsf{Energy} \; \mathsf{Efficiency} = \frac{\mathsf{Goodput}}{\mathsf{Transmitted \; power}}$$

Cuong Nguyen (CCL, UoA)

IR-HARQ-based RC-LDPC Code Extension

Goodput Comparison among Link-layer Solutions

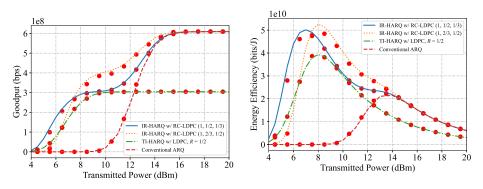


Figure: Goodput versus transmitted powers for different retransmission-based schemes.

Figure: Energy efficiency versus transmitted powers for different retransmission-based schemes.

- IR-HARQ outperforms TI-HARQ and ARQ in terms of goodput and energy efficiency.
- The trade-off between energy efficiency and goodput

Cuong Nguyen (CCL, UoA)

IR-HARQ-based RC-LDPC Code Extension

May 10th, 2023

24 / 27

Goodput Performance over A Satellite Pass Duration

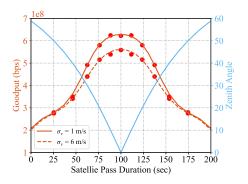


Figure: Goodput performance during a satellite pass duration for different values of velocity variation. The transmitted power is 13 dBm.

- Satellite pass duration: the period that the satellite may be available for line-of-sight communication.
- The goodput performance changes accordingly with the change of zenith angle.
- The impact of pointing errors is strongest when the beam footprint is smallest, or ξ = 0°.

Goodput Performance over A Satellite Pass Duration (cont.)

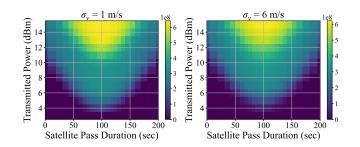


Figure: Goodput performance during a satellite pass duration with different values of transmitted power.

- We can determine the transmitted power to (1) maximize energy efficiency while (2) maintaining a targeted value of goodput during a (3) predefined zenith angle value.
- For example, when $\sigma_v = 6 \text{ m/s}$, the transmitted power should be selected as 13 dBm to retain the targeted goodput of 400 Mb/s for the zenith angle $\xi < 40^{\circ}$.

Cuong Nguyen (CCL, UoA)

IR-HARQ-based RC-LDPC Code Extension

May 10th, 2023

- 1. Consider an IR-HARQ-based LDPC code extension design to address the unreliable transmission issue of optical satellite-assisted vehicular networks.
- 2. Highlight the effectiveness of the IR-HARQ compared to TI-HARQ and ARQ in terms of goodput energy efficiency
- 3. Discuss the proper selection of transmitted power for the considered system.