Research Progress: Performance Analysis of Satellite-based Quantum Key Distribution Systems

NGUYEN Trong Cuong

Computer Communications Lab., The University of Aizu, Japan

July 5th, 2024

< 回 > < 三 > < 三 >

Outline

I. Introduction

II. System model

III. Performance Analysis & Numerical Results

э.

Outline

I. Introduction

II. System model

III. Performance Analysis & Numerical Results

э.

Key Distribution System using Public-Key Cryptography

- Today's communication systems rely on symmetric cryptography to ensure the confidentiality of transmitted data.
 - Secret keys are needed and shared between legitimate parties
- To share the secret key, current systems considers key distribution systems using public-key cryptography (PKC)
 - E.g., Rivest-Shamir-Adleman (RSA)
- Security of PKC is based on the hardness of solving certain mathematical problems
 The time required to break these problems exceeds the useful lifetime of the information.

A Growing Threat from Quantum Computers

With the recent advance of quantum

computers, many people believe that the present key distribution systems will soon be compromised.

Quantum computers: Computers using the quantum states to store information

• Can solve certain mathematical problems much faster than classical computers

Research efforts on quantum-safe solutions become increasingly important.

Quantum Key Distribution (QKD)

Quantum key distribution (QKD): a key distribution protocol based on quantum mechanics

-

6/22

イロト 不良 トイヨト イヨト

Free Space Optical (FSO)-based Satellite QKD Systems

To enable global QKD services for wireless applications, such as secured Internet of Vehicles, a feasible solution is the deployment of free space optical (FSO)-based satellite QKD systems.

- Use FSO channels as quantum channels
- Provide global coverage using satellites

FSO-based satellite QKD systems are potential approaches for secured wireless applications.

Figure: Micius, the first quantum satellite experiment

7/22

A Pressing Concern: Proper Key Reconciliation Design

The raw key shared between Alice and Bob may contain errors due to quantum channel noise and/or eavesdropper attacks \implies The mismatch between both side's sifted keys, denoted as **quantum bit-error rate (QBER)**

In general, these errors will be corrected in the **key reconciliation (KR)** step of *the post-processing phase.*

 Both users exchange information via the public channel to correct their raw keys.

Challenging issues

- Fluctuating QBER due to the uncertainty FSO channel
 KR protocol needs to adapt to a wide range of QBER
- Long propagation delay of satellite communication (in order of milliseconds) => Increase the time of the post-processing phase.

It is necessary to have a proper KR design for satellite-based QKD systems.

NGUYEN Cuong (CCL, UoA)

Progress Report

July 5th, 2024

- 1. Model and analyze the end-to-end performance of satellite-based $\mathsf{FSO}/\mathsf{QKD}$ systems
- 2. Propose a proper KR design for satellite-based QKD systems

э.

Outline

I. Introduction

II. System model

III. Performance Analysis & Numerical Results

ж.

System Model

System model:

- An LEO satellite (Alice) distributes key materials to a ground vehicle (Bob)
- We consider the BB84 protocol with dual-threshold/ direct detection.
- In the quantum phase, Alice shares the key material via an FSO channel.
- In the post-processing phase, Alice and Bob exchange information via a public RF channel.
- An adversary's car (Eve) attempts to tap the transmitted signals within the beam footprint

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 July 5th, 2024

System Model (cont.)

An Example of A Superframe

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

I. Introduction

II. System model

III. Performance Analysis & Numerical Results

$$\mathsf{SKR} = \frac{\mathsf{Avg. number of secret bits per superframe}}{\mathsf{Avg. duration of a superframe}} = \frac{N_{\mathsf{b}} n_{\mathsf{sift}} \sum_{i=1}^{N_{\mathsf{r}}} P_{\mathsf{succ}}^{(i)} \left(\beta_{i} I_{\mathsf{AB}} - I_{\mathsf{E}}\right)}{\overline{\varepsilon}_{\mathsf{Q}} + \left(N_{\mathsf{b}} - 1\right) \max\left[\overline{\varepsilon}_{\mathsf{Q}}, \overline{\varepsilon}_{\mathsf{P}}\right] + \overline{\varepsilon}_{\mathsf{P}}}, \qquad (1)$$

where

- N_b: Number of sifted keys per superframe
- n_{sift} : Length of a sifted key
- $P_{succ}^{(i)}$: the percentage of sifted keys corrected by *i*-th code rate
- N_r : the maximum number of code rates in the family
- \blacksquare I_{AB} : the mutual information between the sifted key of Alice and that of Bob
- $\beta_i = \frac{C_i}{I_{AB}}$: the reconciliation efficiency
- C_i: the *i*-th code rate

3

15/22

Secure Key Rate (cont.)

$$\mathsf{SKR} = \frac{\mathsf{Avg. number of secret bits per superframe}}{\mathsf{Avg. duration of a superframe}} = \frac{N_{\mathsf{b}} n_{\mathsf{sift}} \sum_{i=1}^{N_{\mathsf{r}}} P_{\mathsf{succ}}^{(i)} \left(\beta_{i} I_{\mathsf{AB}} - I_{\mathsf{E}}\right)}{\overline{\varepsilon}_{\mathsf{Q}} + \left(N_{\mathsf{b}} - 1\right) \max\left[\overline{\varepsilon}_{\mathsf{Q}}, \overline{\varepsilon}_{\mathsf{P}}\right] + \overline{\varepsilon}_{\mathsf{P}}}, \qquad (2)$$

where

• $\overline{\varepsilon}_Q$: the average time to share a sifted key over the quantum channel

$$\overline{\varepsilon}_{Q} = \frac{n_{\text{sift}}}{R_{b}P_{\text{sift}}} \tag{3}$$

July 5th, 2024

16/22

• $\overline{\epsilon}_{P}$: the average time to process a sifted key over the public channel

$$\overline{\varepsilon}_{\mathsf{P}} = t_{\mathsf{prop}} + t_{\mathsf{trans}}^{\mathsf{sifting}} + t_{\mathsf{proc}}^{\mathsf{sifting}} + \sum_{i=1}^{N_{\mathsf{r}}} P_{\mathsf{succ}}^{(i)}(2i-1)t_{\mathsf{prop}} + P_{\mathsf{fail}}(2N_{\mathsf{r}}-1)t_{\mathsf{prop}}, \tag{4}$$

In order to compute the secret key rate, we need to find he percentage of sifted keys corrected by i-th code rate, or $P_{\rm succ}^{(i)}.$

 \implies The statistical distribution of QBER per sifted keys is needed.

However, the computation is highly non-trivial because

- 1. A sifted key can be formed from several time slots
- 2. The sifted bits and QBER per timeslots vary depending on the instantaneous channel fading coefficient

 \implies To derive the statistical distribution of QBER per sifted keys, we consider the curve-fitting method.

Curve-fitting method

- **Curve-fitting method:** to find a statistical distribution that best fits the PDF histogram of the simulation data.
- We consider four statistical distributions, i.e., normal, log-normal, exponential Weibull, and Gamma-gamma distribution.
- To assess a distribution's fitness, we use the R squared measure, defined as

$$R^2 = 1 - \frac{\text{residual sum of squares}}{\text{total sum of squares}} = 1 - \frac{\sum_{i=1}^{N} (y_i - f_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2},$$
(5)

where

- N: the number of bins of the data histogram
- y_i : the measured probability density value of the *i*-th bin
- f_i : the predicted probability density value of the *i*-th bin
- \bar{y} : mean value of $\{y_1, y_2, \ldots, y_N\}$

The closer the R^2 value to 1, the better fit the predicted distribution to the simulation data.

< □ ▶ < □ ▶ < □ ▶ < □ ▶
 < □ ▶ < □ ▶

Statistical distribution of QBER per sifted key

The table shows the R^2 values of the considered statistical distributions with the PDF histograms of the simulation data from different scenarios. Other parameters used in the simulation are given as the modulation depth $\delta = 0.2$, the satellite transmitted power $P_t = 20$ dBm.

Condition	Normal	Log-normal	Exponential Weibull	Gamma-Gamma
$\zeta = 1.5$	0.9483	0.937	0.9903	0.9798
$\zeta = 2$	0.951	0.9672	0.9983	0.9976
$\zeta = 2.25$	0.95	0.919	0.9974	0.9854
$\zeta = 2.5$	0.9564	0.86	0.9969	0.949
$\zeta = 2.75$	0.9867	0.8996	0.9859	0.9324
$\zeta = 3$	0.9831	0.9585	0.9902	0.9697

 \implies The exponentiated Weibull distribution shows the best fit among considered statistical distributions $\left(R^2>0.99\right)$

Statistical distribution of QBER per sifted key (cont.)

Accordance of exponentiated Weibull distributions with the PDF histogram of simulation data when $\zeta = \{1.5, 2, 2.25, 2.5, 2.75, 3\}$ (from left to right, high to low)

NGUYEN Cuong (CCL, UoA)

Final key rate versus cloud liquid water content (CLWC)

Cloud liquid water content (CLWC)

- A measure of the total liquid water contained in a specified amount of air in the cloud
- The higher value of CLWC, the higher attenuation of the optical channel

 \implies The theoretical result and simulation one show a good agreement, confirming the correctness of the analytical framework.

July 5th, 2024

Thank you for your attention!

э