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Introduction



Digital Twin (DT) in Vehicular Networks

DT is a virtual model of a physical object (PO) that interacts,

evolves synchronously with PO during its life cycle

=⇒ simulate, analyze, optimize PO via twin model

DT is a promising solution in vehicular networks [1]

• Build DT models to enable applications in vehicular networks
• E.g., vehicle DT → autonomous driving, driver DT → service

recommendations, parking space DT → smart parking, ...
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Digital Twin Modeling

There are 2 ways to build DT model using data-driven approach:
Centralized learning-enabled DT

• A central server collects raw data & train DT model globally

Disadvantages: centralized data collecting → high privacy risk

large size raw data → communication burden

Federated learning (FL)-enabled DT
• Users locally train model by local data → privacy preservation
• Only model parameters (smaller size cf. raw data) are transmitted to

server for aggregation → reduce comm. burden

=⇒ Our focus is the FL-enabled DT modeling approach
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FL-enabled DT in Vehicular Networks (1)

There are two challenging issues of FL-enabled DT in Vehicular Networks:

1. Seamless communication

FL consists of multiple global rounds of exchanging models bw.

server and vehicles → require for seamless comm.

Comm. channel is dynamic in vehicular networks (mobility):
• Channel state information (CSI) changes during the FL process
• Vehicles move out of base station (BS) coverage area
• Higher traffic density at junctions, traffic jam,...

→ More BSs is required to increase coverage, reduce mobility impact

=⇒ UAVs: deployed as flying BSs to aid vehicular networks

(flexible, on-demand deployment, provide line-of-sight channels)
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FL-enabled DT in Vehicular Networks (2)

2. Optimal resource allocation (RA)

RA is necessary to guarantee QoS requirements (accuracy,

latency) of DT model while efficient use of energy

Most existing work proposed static optimization approach for RA

to enable FL [2–7]

• Consider static network scenarios:

given short required latency (∼ few 10s), CSI is stable
• RA can be solved by static optimization approach:

solve once at the beginning but for the whole FL process

But, static optimization can’t be applied in vehicular networks

• Due to the CSI changes, the optimal RA for the first round is no

longer appropriate (optimal) in the next rounds

→ The resource should be dynamically allocated accordingly

=⇒ Require dynamic optimization approach in veh. networks
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Goals of the Study

Our Goal:

We want to minimize energy consumption under latency & accuracy

requirements for FL-enabled DT in UAV-aided vehicular networks

Our Approach:

We first propose a dynamic optimization, where the optim. problem

is solved at the beginning of each global round during FL process

We derive the formulas to instantaneously update the latency,

accuracy requirements, then solve the optim. problem accordingly
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System Model &

Problem Formulation



System Model

We consider the FL-enabled DT in a UAV-aided vehicular network, which is

constructing a global DT model by FL:

K moving connected vehicles (CVs).

Each CV has a local dataset Dk for training the

local model

An server integrated BS for aggregating the local

models to the global model

A relay node UAV deployed near the intersection

for relaying local models from CVs to BS
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FL-enabled DT Dataflow

Let wn
k , w

n be the local model and global model at a global round n.

There are 4 phases at one round:

1. Local model training:

CVs trains the local models on Dk to

update wn
k with initialization wn−1

2. Local model upload:

CVs upload wn
k to BS, directly

or via relay node UAV

3. Global model aggregation:

BS aggregates wn
k to update wn

4. Global model download:

BS broadcasts wn to CVs
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Instantaneous Accuracy and Latency

Let w∗, wn be the optimal & suboptimal model (satisfying a certain accuracy).

We conside two requirements to guarantee DT construction’s QoS:

Global accuracy (accuracy of wn cf. w∗): ϵg =
∏n−1

n′=0 ϵn′

→ derive the instantaneous accuracy requirement of each round ϵreqn′
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Global latency (total time to obtain wn): τg =
∑n−1

n′=0 maxk(tk,n′)

→ derive the instantaneous latency requirement of each round τ req
n′
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Time & Energy Consumption

Energy Time

Comp. ecpk,n = InκCkDk f
2
k,n tcpk = In

CkDk
fk,n

Comm. ecok,n = pk,nt
co
k,n tcok,n = sk

B log2(1+
pk,nhk,n

BN0
)
+ xk,nδ

uav

Total ek,n = ecok,n + ecpk,n tk,n = tcok,n + tcpk,n

Let ηn, fk,n, pk,n, xk,n be optimization variables:

ηn: local accuracy (after running In = v log2(
1
ηn
) local rounds)

fk,n: local CPU frequency (for local model training)

pk,n: transmit power (for local model uploading)

xk,n: relay decision (for local model uploading)

xk = 1 if choosing UAV else 0
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Problem Formulation

We first update remaining instantaneous latency, accuracy

requirements in each round during the FL process

The optimization problem is to minimize energy consumption under the

remaining instantaneous latency, accuracy requirements in each round

as

min
ηn, fn, xn, pn

∑
k∈K Nn

(
ecok,n + ecpk,n

)
s.t. Nn

(
tcok,n + tcpk,n

)
≤ τ req

n ,

0 ≤ ηn ≤ 1,

xk,n = {0, 1},
∑

k xk,n ≤ Nuav
0 ,

0 ≤ fk,n ≤ f max
k , 0 ≤ pk,n ≤ pmax

k ,

• Nn = a
1−ηn

: #global rounds expected to reach accuracy ϵreqn

• Nuav
0 , f max

k , pmax
k : #available channels at UAV, maximum CPU freq.,

transmit power
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Simulation Results



Simulation Settings

We validate the FL-enabled DT on the hand-written digits MNIST

dataset. Each CV has only 3 of the total 10 labels, #samples:

∈ [138, 799] following the power law to mimic the heterogeneous

characteristic of vehicular networks:

We consider 4 approaches to compare the performance

(with vs. without UAV, static vs. dynamic optimization

• BSTA: noUAV/static optimization
• BDYN: noUAV/dynamic optimization
• UBSTA: UAV/static optimization
• UBDYN: UAV/dynamic optimization (our proposal!)
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Simulation Results
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4 approaches give similar learning performance (training loss)

Energy of UAV/dynamic optimization (UBDYN) is smallest:

• 15.5% less than UAV/static optimization (UBSTA)

⇒ Dynamic optimization improves both comp. and comm. energy
• 39.9% lower than noUAV/dynamic optimization (BDYN)

⇒ UAV significantly improves comm. energy
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Conclusion



Conclusion

1. We investigated the energy-efficient resource allocation problem for

FL-enabled DT in UAV-aided vehicular networks

2. Observations from the results:

• The deployment of UAV can improve the communication channel

between BS and CVs during the FL process
• The dynamic optimization can improve both computation and

communication energy, thus lowering energy consumption
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Thank you for your attention.
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