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Introduction



Digital Twin (DT) in Vehicular Networks

m DT is a virtual model of a physical object (PO) that interacts,
evolves synchronously with PO during its life cycle

— simulate, analyze, optimize PO via twin model

Physical objects Virtual twins

Data

() . ) <
g1 =

Digital twin models

e -~ DB

Simulation Analysis Optimization

m DT is a promising solution in vehicular networks [1]

® Build DT models to enable applications in vehicular networks

® E.g., vehicle DT — autonomous driving, driver DT — service
recommendations, parking space DT — smart parking, ...
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Digital Twin Modeling

There are 2 ways to build DT model using data-driven approach:
m Centralized learning-enabled DT
® A central server collects raw data & train DT model globally
Disadvantages: centralized data collecting — high privacy risk
large size raw data — communication burden

m Federated learning (FL)-enabled DT

® Users locally train model by local data — privacy preservation

® Only model parameters (smaller size cf. raw data) are transmitted to
server for aggregation — reduce comm. burden

= Our focus is the FL-enabled DT modeling approach
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FL-enabled DT in Vehicular Networks (1)

There are two challenging issues of FL-enabled DT in Vehicular Networks:

1. Seamless communication
m FL consists of multiple global rounds of exchanging models bw.
server and vehicles — require for seamless comm.
m Comm. channel is dynamic in vehicular networks (mobility):
® Channel state information (CSI) changes during the FL process

® Vehicles move out of base station (BS) coverage area
® Higher traffic density at junctions, traffic jam,...
— More BSs is required to increase coverage, reduce mobility impact

= UAVs: deployed as flying BSs to aid vehicular networks
(flexible, on-demand deployment, provide line-of-sight channels)

BS coverage area ( )
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FL-enabled DT in Vehicular Networks (2)

2. Optimal resource allocation (RA)

m RA is necessary to guarantee QoS requirements (accuracy,
latency) of DT model while efficient use of energy

m Most existing work proposed static optimization approach for RA
to enable FL [2-7]

® Consider static network scenarios:
given short required latency (~ few 10s), CS/ is stable
® RA can be solved by static optimization approach:
solve once at the beginning but for the whole FL process
m But, static optimization can't be applied in vehicular networks

® Due to the CSI changes, the optimal RA for the first round is no
longer appropriate (optimal) in the next rounds
— The resource should be dynamically allocated accordingly

—> Require dynamic optimization approach in veh. networks
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Goals of the Study

Our Goal:
We want to minimize energy consumption under latency & accuracy
requirements for FL-enabled DT in UAV-aided vehicular networks

Our Approach:

m We first propose a dynamic optimization, where the optim. problem
is solved at the beginning of each global round during FL process

m We derive the formulas to instantaneously update the latency,
accuracy requirements, then solve the optim. problem accordingly
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System Model &
Problem Formulation




System Model

We consider the FL-enabled DT in a UAV-aided vehicular network, which is
constructing a global DT model by FL:

m K moving connected vehicles (CVs). (((%4%)‘ o
Each CV has a local dataset Dy for training the %
local model =

m An server integrated BS for aggregating the local
models to the global model

m A relay node UAV deployed near the intersection
for relaying local models from CVs to BS

Direct comunication channel to BS
Comunication channel to the relay UAV
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FL-enabled DT Dataflow

Let wj, w” be the local model and global model at a global round n.
There are 4 phases at one round:

1. Local model training: @ Local model training (3 Global model aggregation

CVs trains the local models on D to @Local model upload @Global model download
k

update w{ with initialization w" !

2. Local model upload:
CVs upload wj to BS, directly
or via relay node UAV

3. Global model aggregation:
BS aggregates wj, to update w”

4. Global model download:
BS broadcasts w” to CVs
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Instantaneous Accuracy and Latency

Let w*, w" be the optimal & suboptimal model (satisfying a certain accuracy).

We conside two requirements to guarantee DT construction’s QoS:
m Global accuracy (accuracy of w" cf. w*): g = H:,_:lo €

req
n/

— derive the instantaneous accuracy requirement of each round €
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m Global latency (total time to obtain w"): 7, = 3" maxy(tx, )

. . . req
— derive the instantaneous latency requirement of each round T
[ Local training time [ Model uploading time [ Aggregation & broadcasting (~ 0)
Latency Requirement 7,
Global round 0 Global round 1 Global round n
t = max (tico + t62) £ = max [CRR) ty = max P +159)
ol of &) | A 5
w2 e | 65 | 655 i
ok [ e ‘ W | | ‘l

req

= 1 Teq _ |




Time & Energy Consumption
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Let 1, fx,n, Pk,n, Xk,n be optimization variables:

m 1), local accuracy (after running I, = vlogz(%) local rounds)
m fi: local CPU frequency (for local model training)
B pi o transmit power (for local model uploading)

m X, relay decision (for local model uploading)
xk = 1 if choosing UAV else 0
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Problem Formulation

m We first update remaining instantaneous latency, accuracy
requirements in each round during the FL process

m The optimization problem is to minimize energy consumption under the
remaining instantaneous latency, accuracy requirements in each round

as
min ZkEIC N" (e/i?n + eli?n)
M, Fny Xn, P
s.t. N (e + ) < 70,
0<n, <1,
Xk,n = {07 1}72;( Xk,n < N(L)jav7
0< fin <A™,0< pron < PR,
® N, = —2—: #global rounds expected to reach accuracy ;¢

1—np”
o NG, "™, pp®: #available channels at UAV, maximum CPU freq.,

transmit power
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Simulation Results




Simulation Settings

m We validate the FL-enabled DT on the hand-written digits MNIST
dataset. Each CV has only 3 of the total 10 labels, #samples:
€ [138,799] following the power law to mimic the heterogeneous
characteristic of vehicular networks:

m We consider 4 approaches to compare the performance
(with vs. without UAV, static vs. dynamic optimization

BSTA: noUAV /static optimization

BDYN: noUAV /dynamic optimization

UBSTA: UAV /static optimization

UBDYN: UAV/dynamic optimization (our proposall!)
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Simulation Results
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m 4 approaches give similar learning performance (training loss)
m Energy of UAV/dynamic optimization (UBDYN) is smallest:

® 15.5% less than UAV /static optimization (UBSTA)

= Dynamic optimization improves both comp. and comm. energy

® 39.9% lower than noUAV /dynamic optimization (BDYN)
= UAV significantly improves comm. energy
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Conclusion




Conclusion

1. We investigated the energy-efficient resource allocation problem for
FL-enabled DT in UAV-aided vehicular networks
2. Observations from the results:

® The deployment of UAV can improve the communication channel
between BS and CVs during the FL process

® The dynamic optimization can improve both computation and
communication energy, thus lowering energy consumption
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Thank you for your attention.
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