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Outline

o Part I: Convolutional Codes 

o Part 2: My study 
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Part I: Review of FEC Code 

o FEC is used to correct transmission errors over an unreliable 
and noisy communication channel without asking for 
retransmission  
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o Idea: 

• Transmitter encodes data by adding 

some redundant bits 

• Receiver, using redundant bits, can 

correct errors                                                                                 

o There are two main types of FEC  

• Block code: systematic code

• Convolutional code: non-systematic code



Convolutional Codes (CC)

o For applications which require a continuous stream of bits (e.g. 
Digital video Broadcasting-Terrestrial), the use of block codes 
may not convenient.  

o The convolutional codes, that generate redundant bits 
continuously so that error checking and correcting are carried 
out continuously, are used for those applications. 

o Features: 

• generates redundant bits by using modulo-2 convolutions (name of code) 

• has memory: output bits depend on not only the current input bits but also 

the previous bits   

• Non-systematic code: cannot distinguish the message bits and redundant bits 
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M = 2, K = 3

k = 1

n = 2

Encoder of CC

o A convolutional code (n, k, K)

• k: no. of message bits shifted into the encoder at a time (k = 1 is usually used) 

• n: no. of encoder output bits corresponding to the k message input bits  

• K: constraint length; no. of shifts over which a single message bit can influence the 

encoder output (K = M + 1); M: shift registers

• Coding rate: Rc= k/n

o E.g. CC (2, 1, 3) 
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Example of CC  

o (n, k, K) = (2, 1, 3)

o Input: m = 10011

o Output: c = {11, 10, 11, 11, 01, 01, 11}   
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Representation of CC (1)
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o The structure properties of a convolutional encoder can be 
illustrated in graphical form such as (1) state diagram (2) trellis

No. of states: 2K-1

Input bit = 0

Input bit = 1

Encoder output bits a

cb

d

o (1) State diagram 

• States are defined as (K-1) message 

bits stored in encoder’s shift register 

• E.g.: current state a: 00 

input output

0 0

1 11: b

0 0

0 00: a

0 0

Case 1

Case 2 Input: m = 10011

Output: c = {11, 10, 11, 11, 01, 01, 11}   



Representation of CC (2)

8Mar. 13, 2019 Project Confirmation Seminar 

o (2) Trellis: extension of state diagram according to time

o The trellis contains (L + K) levels, where L is the length of 
incoming message  

o Example: m = 10011 → c = {11, 10, 11, 11, 01, 01, 11}  

00

10

01

11

a

b

c

d

Input bit = 0

Input bit = 1



Decoder of CC

o How to get the correct message at destination? 

o There are two kinds of algorithm to encode the CC codes

• Maximum likelihood algorithm

• Viterbi algorithm 
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DecoderCodewords Data bit stream



Maximum likelihood (ML) decoding (1)

o Given the received sequence r, the decoder is required to make 

an estimate ෝ𝑚 of m (note: ෝ𝑚 = m if and only if Ƹ𝑐 = 𝑐(𝑚)). 

o The decoding rule is the selection of the estimate Ƹ𝑐 so that the 
probability of decoding error (Pe) is minimized. 

o Pe is minimized if the estimate Ƹ𝑐 is chosen to maximize the 
likelihood function, p(r | c)

𝑝 𝑟 Ƹ𝑐 ＝ max
over all c

𝑝(𝑟|𝑐)

where c is one of the possible transmitted sequences
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Encoder Decoder

message

𝑐(𝑚)m r ෝ𝑚

codeword received sequence estimate m

Wireless channel



Maximum likelihood (ML) decoding (2)

o For a binary symmetric channel, both c and r represent binary sequences of 
length N, we have : 𝑝 𝑟 𝑐 = ς𝑖=1

𝑁 𝑝(𝑟𝑖|𝑐𝑖)

where 𝑟𝑖 and 𝑐𝑖 are the i-th elements of r and c 

o The log-likelihood: 𝑝 𝑟 𝑐 = σ𝑖=1
𝑁 𝑝(𝑟𝑖|𝑐𝑖) ; where 𝑝 𝑟𝑖 𝑐𝑖 = ൝

𝑝, if 𝑟𝑖 ≠ 𝑐𝑖
1 − 𝑝, if 𝑟𝑖 = 𝑐𝑖

o Suppose that r differs from c in exactly d positions; d is the Hamming 
distance, then we may re-write the log-likelihood, 

log 𝑝 𝑟 𝑐 = 𝑑 log 𝑝 + 𝑁 − 𝑑 log 1 − 𝑝 = 𝑑 log
𝑝

1−𝑝
+ 𝑁 log(1 − 𝑝)

o In summary, the maximum-likelihood decoding rule for binary symmetric 
channel as follows, 

Choose the estimate Ƹ𝑐 that minimizes the Hamming distance between the 
received sequence r and the transmitted sequence c
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ML decoding: Example

o E.g., m = 101 → c = {11 10 00 10 11}; p = 0.1;  

received sequence r = {11 11 00 10 11}. Find ෝ𝑚?

o ML decoding is too complex to search all available paths (in case of very long 
input message bits)

• End-to-end calculation   
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path Code sequence Hamming 

distance

00000 00 00 00 00 00 7

00100 00 00 11 10 11 6

01000 00 11 10 11 00 6

01100 00 11 01 01 11 5

10000 11 10 11 00 00 6

10100 11 10 00 10 11 1

11000 11 01 01 11 00 5

11100 11 01 10 01 11 4

Viterbi algorithm performs ML by reducing its complexity 



Viterbi Algorithm  

o Viterbi reduces decoding complexity by removing the trellis 
paths that could not possibly be candidates for ML choice (early 
rejection)   

o Origin of Viterbi Decoding

• Andrew J. Viterbi, "Error Bounds for Convolutional Codes and an 

Asymptotically Optimum Decoding Algorithm," IEEE Transactions on 

Information Theory, Volume IT-13, pp. 260-269, April 1967.

• Viterbi is a founder of Qualcomm.

o There are two kinds of Viterbi Decoding 

• Hard-decision Viterbi Algorithm 

• Soft-decision Viterbi Algorithm  
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Hard-decision: branch metric 

o Branch metric = Hamming distance between received and 
transmitted bits  

o Encoder is initially in state 00, receive bits: 00 
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Hard-decision: path metric 

o Path metric = path metric of predecessor + branch metric

o Note: path metric for the left-most state of the trellis is 0
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Hard-decision: early rejection

o Problem: each state has two predecessors (or two branches 
enter a node)

o The algorithm compares two path metrics corresponding to two 
predecessors. The path with lower metric is retained, and the 
other path is discarded   
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Hard-decision: survivor path 

o The paths that are retained by the algorithm are called survivor    

o Some branches are not the part of any survivor: remove them 
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Hard-decision: estimate ෝ𝑚

o Choose the survivor path with lowest metric

o Estimate ෝ𝑚 = 0 1 1
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1 1



Hard-decision: Example (1) 

o E.g., transmitted codeword: c = {00, 00, 00, 00, 00} and received 
sequence: r = {01, 00, 01, 00, 00}
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Hard-decision: Example (2) 
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Ƹ𝑐 = {00, 00, 00, 00, 00} 

Choose the path with 

lowest metric 



Viterbi Decoding: Soft-decision (1)  

o Coded bits are actually continuously-valued “voltage” between 
0V and 1 V

o Hard-decision decoding digitize each voltage to “0” and “1” by 
comparison against threshold voltage 

• Lose information about how “good” the bit is 

• Strong “1” (0.99V) treated equally to weak “1” (0.51V) with threshold of 

0.5V   

21Mar. 13, 2019 Project Confirmation Seminar 



Viterbi Decoding: Soft-decision (2) 

o Soft-decision requires a stream of “soft bits” where we get not only the 1 or 0 
decision but also an indication of how certain we are 

• E.g. 000 (definitely 0); 001 (probably 0); 010 (maybe 0); 011 (guess 0); 100 (guess 1); 

101 (maybe 1); 110 (probably 1); 111 (definitely 1)  

• We call the last two bits are the “confidence” bits
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Viterbi Decoding: Soft-decision (3) 

o For a rate 1/2, the demodulator delivers two code symbols at a time to the 
decoder  

• For hard-decision (2-level), each pair of received codes can be depicted on a plane (Fig. a)

• For 8-level soft decision, each pair of symbols can be represented on an spaced 8 level by 8 level 

plane (Fig. b)  

o Soft-decision branch metric: using Euclidean distance (Hamming distance 
metric cannot use because of its limited resolution)

o E.g. fig. c,  a pair of noisy code-symbol values is the point (5,4). What’s 
Euclidean distance?  
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• Same path metric computation

• Same Viterbi algorithm 



Error Correcting Capability (1)

o How many bit errors can be corrected? 

o Using the free distance dfree to calculate the error-correcting capability of the 
code  

• Free distance = minimum Hamming distance between each of possible codeword

sequences and all-zeros sequence

• A convolutional code with dfree can correct t errors if and only if dfree is greater than 2t.

o E.g., Trellis with K = 3
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Find the path with smallest 

non-zeros path metric

dfree= 5: we can correct 2 errors



Error Correcting Capability (2)

o The value of dfree depends on the constraint length K. 
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Constraint length (K) Free distance (dfree) 

2 3

3 5

4 6

5 7

6 8

7 10

Source: A. J. Viterbi and J. K. Omura, Priciples of Digital Communication 

and Coding, McGraw-Hill Book Company, New York, 1979, p. 251  



Performance of CC 

o Performance of CC depends on the coding rate and the 
constraint length 

• Longer constraint length K 

• More powerful code 

• More coding gain 

• More complex decoder 

• More decoding delay 

• Smaller coding rate Rc = k/n   

• More powerful code due to extra redundancy 

• Less bandwidth efficiency 
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Changing code rate: puncturing 

o How to change coding rate? 

o E.g. we have a coding rate Rc = 1/2; how to change it into a 
higher coding rate of 2/3. There are two ways  

• Reconstruct the encoder by using an input and output multiplexer: hardware

• Use puncturing technique: software → more convenient 

o Idea: delete some bits in the original low-rate coded bits

o Decoding: same Viterbi algorithm (decrease error correction 
capability) 
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Punctured Convolutional Code 

o Using puncturing table (a N x p matrix) to indicate which bits to include

• Contains p columns and N rows; p is puncturing period

• If 1, the corresponding code bit is a part of punctured code

• If 0, delete the corresponding code bit     

o The total number of 1’s in the matrix is p + L; with L = 1,2,…, (N-1)L

o For p input information bits, there are p + L output coded bits. Thus, the rate 
of the punctured convolutional code is p/(p + L)   
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Punctured Convolutional Code: Example (1)

o E.g., message bits m = {0, 0, 1, 0, 0}, coded bits c = {00, 00, 11, 01, 11}, coding 
rate R0 = 1/2

o c is punctured using two different puncturing tables (matrices) with the 
puncturing period is p = 4 

o Using P1, 3 out of 4 code bits of the mother code are used, the others are 
discarded, i.e., c = {00, 0x, 1x, x1, 11} = {00, 0, 1, 1, 11}  

• Coding rate, R = 4/5

o Using P2, 2 out of 4 code bits of the mother code are used, the others are 
discarded, i.e., c = {00, 00, 1x, x1, 11} = {00, 00, 1, 1, 11}

• Coding rate, R = 4/6 = 2/3   
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Punctured Convolutional Code: Example (2)

o Encoder of a rate 1/2 code is punctured to a rate 4/5 (top 
puncturing table) or a rate 2/3 code (bottom puncturing table)
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Rate-compatible punctured CC 

o How to design convolutional code in adaptive systems (with 
variable-rate coding)?

• Puncturing technique is used for change code rate

• Using rate-compatible restriction: all code bits of higher rate punctured code 

of the family (from a mother code) are used by the lower rate codes  

o This way guarantees smooth transition between different code 
rates in the systems using adaptive FEC codes 

o Rate-compatible punctured convolutional (RCPC) codes 

• if higher rate codes are not sufficiently powerful to decode channel errors, 

only supplemental bits which were previously punctured have to be 

transmitted in order to upgrade the code
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Part 2: FSO-based Satellite Systems

o Satellite systems widely use in: 

• Navigation

• Broadcasting

• Disaster recovery 

o Classification: LEO (between 160 –
2000 km), MEO (between LEO and 
GEO), and GEO (~36,000 km) 

o FSO-based satellite to provide high-
speed connections (~Gbps)

o Challenge considered in my research: 
atmospheric turbulence (its effect is up 
to 40 km above the sea level) 
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Proper error control methods are needed 

Satellite 

Optical ground 

station

Uplink Downlink 

Optical ground 

station



Solutions (1): Error Control Methods 

o In FSO-domain, there are two popular error control methods: 
ARQ protocols and FEC codes 

o ARQ: retransmission 

• When the channel error rate is high: not efficient due to the increased 

frequency of retransmissions. 

• In satellite systems: delay is the important issue due to retransmissions. 

• Terrestrial (2 km) ~ 6.67 𝜇s , LEO satellite(2000 km) ~ 6.67 ms

o FEC code: add redundancy to correct errors 

• When the channel less noisy: decrease the throughput due to adding 

redundancy 

• If the errors are uncorrectable by FEC: lose the reliability 
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Solutions (2): Hybrid FEC-ARQ (HARQ)

o HARQ: hybrid between FEC and ARQ  

o FEC: try to correct the errors first in order to reduce the 
frequency of retransmissions.  

o ARQ: is used for retransmission if the errors are uncorrectable 
by FEC. 

o In this way, it is possible to achieve a higher reliability than a FEC 
alone and lower delay than ARQ alone 
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Review of HARQ Protocol  

o Type I-HARQ: always discards corrupted frames while they still 
contains some useful information → not efficient     

o Type II-HARQ: is an advanced form of HARQ which uses the 
concept of frame combining 

o Frame combining: the corrupted frames will be stored in the 
receiver’s buffer to be combined with other retransmissions to 
enhance the correction performance 

o Type II-HARQ can be classified into 2 types: chase combining 
(CC) and incremental redundancy (IR) 
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Chase Combining

o CC-HARQ: same frames including FEC code are retransmitted 
each time and retransmitted frames will be combined to obtain 
the correctable information thanks to Maximum-ratio combining 
(MRC) technique    
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Source: http://www.rfwireless-world.com



Incremental Redundancy (IR) 

o IR-HARQ: effective code rate is gradually lowered until received 
frame is decoded correctly → more efficient
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Literature Survey of HARQ 

o In FSO domain (IEEE-Journal)

o Problems: 

• Most of them considered the employ of HARQ in PHY layer point of view.

• Hardware implementation in high-speed connection (~Gigabit) at PHY: big 

challenge, showed in [6] → should be employed at the link layer (faster).

• The stop-and-wait ARQ in FSO: not efficient, demonstrated in my previous 

works → should be replaced by sliding window ARQ 

• AMC should be employed to improve system performance
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Reference Main contribution Type of FEC Type of ARQ

[1] - 2011 Type II (CC) HARQ over Log-normal Block code Stop-and-wait

[2] - 2012 Type I and II HARQ over Gamma-gamma Block code Stop-and-wait

[3] - 2014 Type I and II HARQ in FSO with pointing error Block code Stop-and-wait

[4] - 2016 Type II HARQ in RF-FSO Block code Stop-and-wait

[5] - 2017 Type II RF-FSO multi-hop with HARQ Block code Stop-and-wait



My study 

o Link layer: truncated IR-HARQ 

• FEC: rate-compatible punctured convolutional 

codes

• ARQ: sliding window ARQ 

o PHY layer: 

• Adaptive Modulation and Coding (AMC)

• Burst transmission with adaptive number of 

frames  

• Channel model (source: NICT experiment): 

Gamma-gamma is the best fitting model for 

downlink in LEO satellite systems
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Downlink 

Optical ground 

station

LEO satellite

2017. JOCN. Received-Power Fluctuation Analysis for LEO Satellite-to-Ground Laser Links



How it works? (1)

o LL: for each frame 
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EncoderNf bits 2Nf bits Puncturing

Information frame

coded frame with 

mother code

punctured code family
Sender Destination
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NAK
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Send a new frame
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3
bits

𝑁𝑓

3
bits

𝑁𝑓

3
bits

Rate =
3

4

Rate =
3

5

Rate =
1
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How it works? (2)

o PHY: Burst transmission 
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Header Payload (adaptive number of frames)

F1(new) F2(new) F3(new) F4(new) F2(re-1) F3(re-1) F5(new)

NAK (2,3)Burst transmission

Transmitter

Receiver

Equal-size frames?



Frame Design 

o Frame structure
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Header Data CRC Tail bits

Encoder with rate of k/n

Nf bits

Information frame

Coded frame

n.Nf / k bits

Maximum no. of retransmissions: Nre

For new transmission

For retransmissions

Punctured code

Nf bits

[Nf (n/k - 1)]/Nre bits



Burst Transmission Design

o How to design a burst transmission? 
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Header Payload (adaptive number of frames)

Mode 1: BPSK 1st 1 frame

Mode 2: QPSK 1st 2nd 2 frames

Mode 3: 8-QAM 1st 2nd 3rd 3 frames

Mode m: 2m-QAM 1st 2nd 3rd … m-1th mth m frames
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Thank you for your attention!
(Q&A)
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