

Computer Communication Laboratory

Research Topic Presentation

Spatial Resource Allocation for ORIS supporting multiple UAVs in FSO-assisted HAP-IoV Networks

Advisor: Prof. Anh T. PHAM and Prof. Hoang D. LE

Presenter: DANG Dinh Khanh – M1

Aizuwakamatsu, Nov. 6 2024

Outline of Presentation

- Research background
 - FSO assisted HAP-IoV network
 - What is the Reconfigurable Intelligence Surface (RIS)?
 - The principle of optical RIS (ORIS)
 - Survey the existing works of ORIS
 - Motivation
- **G** System Proposal
 - Challenging Issues
- **D** Possible approaches
- Our focus: problem statement and my target

The demand for 6G wireless network requires <u>cost-effective</u>, <u>globally connected</u> and <u>high data rate</u> solutions. FSO-assisted Non-Terrestrial Network is a promising candidate.

Free Space Optical (FSO) communications

- Using infrared frequency bands to transmit data in free space.
- High-speed connection (Gbps and even Tbps)
- Free-license bandwidth

✤ 6G applications

- Internet of Vehicles (IoV)
- Internet of Medical Things (IoMT)
- Internet of Senses (IoS)
- Internet of Remote Things (IoRT)
- Vehicle to Everything (V2X)
- Smart Grid IoT,...

1. Research Background: FSO-assisted IoV networks

Internet of Vehicles (IoV) is a network of vehicles equipped with sensors, software, and the technologies that aim to connect and exchange data over the Internet.

1. Research Background: FSO-assisted HAP-IoV Networks

High altitude platform (HAP)

- Airships or balloons
- o Altitude: 17-25 km
- Flexible deployment, easy maintenance, cost-effectiveness
- Provide connection to remote areas.

HAPs can serve as relay stations to increase the coverage and avoid blockage.

Challenges

- Power-consuming
- Hardware complexity
- Additive noise

1. What is the Reconfigurable Intelligence Surface (RIS)?

Reconfigurable intelligent surface (RIS)

- An artificial surface, made of electromagnetic material or massive inexpensive antenna that controls and manipulates the impinging waves into the expected directions.
- Low cost, low complexity, low power.
- Improve coverage by turning NLoS links into multiple LoS links.

Meta surface-based RIS

RIS made of massive inexpensive antenna

RIS made of metallic or dielectric patches

The function of RIS

- **RIS** is applied for many technologies
 - Radio Frequency (RF)
 - Visible Light Communication (VLC)
 - TeraHertz (THz)
 - \circ mmWave
 - o QKD
 - Hybrid mmWave-THz
 - **FSO**

Many research works and continuously improving

Optical RIS (ORIS) is the RIS that is created to reflect the light waves

A mechanical rotary structure controlled by electrical motors Use micro-electromechanical systems (MEMSs) Using V-shaped optical nano-antennas

Use oxide material and control electricity to turn the phase of incident waves

ORIS for Terrestrial Networks

Year	Refs	System Model	Channel Modeing	FSO channel	Contributions	Performance Metrics	Multiple users
2021	[1] TvT	Multiple-branch RIS-assisted FSO system	AA, AT, Obstruction Prob	Gaussian beam speading loss	Close-form of channel	OP, BER	yes
2022	[2] JLT	point-to-multipoints FSO system	Experiment	Experiment	Physical models for ORIS, closeform for power density , beam splliting algorithm, power allocation	Power density	yes
2022	[3] TvT	IRS-assisted multilink FSO system	AA, PE, ORIS physical model	Large-scale fading	Space division multiple access	OP, BER	yes
2023	[4] TransCom	Multiple FSO buildings - a single RIS - buildings	AT, PE, AA	Gamma-Gamma	Three allocation protocols	OP, BER	yes
2023	[5] Globecom	Building - RIS/Relay - Building	AA, AT, GML	Gamma-Gamma	Analyze Power Scaling Law	OP	no
2023	[6] TVT	Base Station-ORIS-VLC system	PE, AT, AA, Beam wandering	Log-normal	Proposes an OIRS-assisted cascaded FSO-VLC system	OP, BER	no
2023	[7] LCF	MIMO system, BS is laser source	AA, AT, PE	Log-normal	Mathematical model of Optical MIMO	BER, OP	no
2023	[8] Trans Com	MIMO-FSO system	PE, AT, AA	Malaga distribution	Close-form of FSO channel	Egodic Capacity, BER	no
2023	[9] TVT	One LS-RIS-multiple users	symbolic FSO fading channel	Meijer G-function	Meijer G-based symbolic models	OP	yes
2024	[10] Photonics	Multiple LSs in building - RIS - Multiple PDs	Deeply consider PE	Gamma-gamma	Optimal RIS position under poiting	BER, OP	yes
2024	[11] loT	RIS-assisted resonant beam SWIPT system	Diffraction	no	Analyze CSI	Transfer efficiency	no
2024	[12] loT	RIS-assisted hybrid FSO/THz terrestrial system	AT, PE, AA	F-distribution	Close-form PDF, CDF of cascaded channel	OP, SER	no
2024	[13] loIT	RIS-assisted FSO network for High-Speed Train	AT, Foggy and GML	Gamma-Gamma	Close-form of LCR, AFD	LCR, AFD	no

ORIS for terrestrial network is well investigated.

ORIS for Space Networks

Year	Refs	System Model	Channel Modeing	FSO channel	Contributions	Performance Metrics	Multiple users
2021	[14] ICC	UAV-euipped IRS FSO communication	AT, PE	Gamma-Gamma, Hoyt	Quantify the physical impacts Close form of EC	Ergodic Capacity	no
2022	[15] ICT Exp	IRS-assisted UAV Dual-Hop FSO Com	AT, AoA, GML	Gamma-Gamma	Channel modeling close form of performance	OP, BER	no
2023	[16] TvT	IRS-assisted UAV Dual-Hop FSO Com	AT, AoA, PE	Gamma-Gamma	Considering different locations of the malicious UAV jammer and IRS	BER	no
2023	[17] Photonics	SAT-HAP-UAV assited RIS hybrif FSO/RF	AT, AA, PE	Gamma-Gamma/ Rician	Three different relay schemes in different weather conditions based on HAP	BER	no
2024	[18] Trans NS	RIS-assisted UAV Indoor Optical Networks	Indoor	no	A joint user selection and mirror element assignment problem to maximize the number of users served subject to QoS	Average sumrate	yes
2024	[19] TvT	RIS-assisted UAV multiple-Hop FSO backhaul link	AA, AT, PE	F distribution	Introduce a network architecture suitable for FSO backhaul transmissions	OP, BER	no
2024	[20] TAE	SAT- HAP eqipped RIS - UAVs	AA, AT, Cloud	Gamma-Gamma	Resource allocation algorithm to maximize no.f UAVs	Sumrate	yes

To my best knowledge, the research works in ORIS for space networks is not well investigated

ORIS for Space

• **Contribution:** Propose RIS's resources allocation to maximize number of UAVs

• Weakness :

- Not consider pointing error
- The channel is not investigated carefully
- Not maximize the total sum rate

[20] Transaction on Aerospace and Electronic Systems

2. System Proposal: system description

System description:

- **Source:** multiple laser sources putting in the top of buildings
- **Relay:** HAP carries one ORIS
- Destination: multiple UAVs for temporary event, shipping, rescue, data collection service.

2. System Proposal: the Challenging Issues

Challenge:

- $\circ~$ The limited ORIS's unit, size
- Large beam footprint
- \circ Time varying channel
- Pointing error
- In the context of *multiple laser* sources-multiple UAVs (LS-UAV), how to allocate units of RIS effectively to multiple LS-UAVs?

Time Division Protocol (TD): each time slot, one LS-UAV pair transmits, while the others are inactive.

Assume that there are 4 pair LS-UAVs, the maximum transmission rate for each link is 1Gbps

3. Possible Approaches: Time Division

Advantage:

The active user receives maximum power as the RIS serves only one LS-UAV pair at a time

Meta surface-based RIS

Disadvantage: the time sharing among LSs degrades the total achievable throughput, waste of RIS's units. Total system's throughput = $\frac{1+1+1+1}{4} = 1$ Gbps

CCL

Space Division Protocol (SD): divide RIS's unit to all LS-UAVs equally.

Advantages

- All LS-UAVs simultaneously illuminate the RIS.
- Data rate may be increased compared to the TD protocol.

Disadvantage:

- Large Beam width, so can't reach the maximum transmission rate for each LS-UAV.
- When pointing error occurred, the system's throughput is dramatically decreased.

Total system's throughput = $\frac{0.7 \times 4 \times 4}{4}$ = 2.8 Gbps > Time Division

Meta surface-based RIS

3. Possible Approaches: IRSH

- **IRS homogenization (IRSH):** divide the RIS's unit in interlaced arrangement
- Advantages
 - Degrade the effect of pointing error.

 In case of no pointing error, performance is smaller than ID,SD

Problems

- *Firstly,* due to the mobility of UAVs, *the channel is dynamic* (the time varying channel) while the RIS's units *are divided equally*.
- If channel is *good*, it needs *few RIS's units*
- o If channel is *bad*, it needs *more RIS's units.*

For example:

- UAV1 is in *good channel condition*, waste of RIS's unit
- UAV2 is in very bad channel condition, outage occurred.
- Secondly, TD, SD, IRSH don't maximize the total throughput.
- *Thirdly,* in case of PE, how to *arrange* the RIS's units to *reduce the effects of pointing error* and provide higher throughput than IRSH?

Contributions

Firstly, I propose a <u>novel resource allocation mechanism</u> considering the different channel condition of each UAVs.
 This mechanism will <u>allocate</u> the number of RIS's unit for each user that maximize the total throughput while guarantee the outage probability level and Quality of Services (QoS) of each UAVs.

Number of RIS's units for
$$UAV_i$$

 $max(Total_Throughput) = \sum_{i=1}^{N} Throughput(i)$, where N is number of UAVs
s.t $OP \ge OP_{target}$, QoS

Secondly, considering the pointing error when HAP is hovering and UAV is moving, propose <u>a new RIS's units</u>
 <u>arrangement</u> to reduce the impact of pointing errors and provide higher total throughput.

THANK YOU FOR LISTENING!