CCL Seminar

High Altitude Platform Station (HAPS)aided Communication Systems

Linh T. Hoang

UoA, May 12th, 2021

Contents

- 6G Vertical Heterogeneous Network (VHetNet)
- Vision and Use Cases of HAPS in 6G VHetNet
- Specifications of HAPS
- Open challenges
- Conclusions

6G Vertical Heterogeneous Network (VHetNet)

- VHetNet : under discussion for 6G network architecture [1] [2]
 - 3 layers : satellites (space), aerial, and terrestrial
- **HAPS** : an integral component of the aerial network
 - Before: research activities since 1990s, focus on rural areas and disaster applications
 - In 6G: envisioned to support mobile services for densely-populated areas (with ultra-wide coverage and high capacity)

[1] G. K. Kurt *et al.*, "A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future," *IEEE Commun. Surv. Tutorials*, pp. 1–1, 2021. [2] 3GPP, "Study on New Radio (NR) to support non-terrestrial networks V15.4.0 (Rel. 15)," Tech. Rep., 2020.

Vision of HAPS in 6G VHetNet

- Bridge the space and terrestrial networks over densely populated urban areas
- Provide connectivity and computation over terrains that are not suitable for ground network architectures

HAPS-mounted Super Macro Base Station (HAPS-SMBS)

Approaches for improving the coverage and capacity of terrestrial networks:

- Increase the network densification through small cell deployments
 - Not up to the task of matching the future demand [1]
- UAV-mounted BSs
 - Constraints in size, weight, and power (SWAP)
 - Limited lifetime, coverage, and computational power
- HAPS-SMBS systems:
 - Quasi-stationary & larger footprint
 - More computational power
 - Better LOS communications link
 - Not an alternative, but a complementary solution

[1] J. G. Andrews, X. Zhang, G. D. Durgin, and A. K. Gupta, "Are we approaching the fundamental limits of wireless network densification?" IEEE Communications Magazine, vol. 54, no. 10, pp. 184–190, Oct. 2016.

Use cases of HAPS-SMBS (1)

(a) Delivering IoT services
 IoT devices with **low data transmission rate** are capable
 of communicating directly with a HAPS using **low** transmission power [1]

[1] G. K. Kurt *et al.*, "A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future," *IEEE Commun. Surv. Tutorials*, pp. 1–1, 2021.

Use cases of HAPS-SMBS (2)

(b) Backhauling small-cell BSs

- Fiber optic communications for backhaul connectivity is cost-demanding for small cell BSs
- Using wireless microwave links or mmWave bands: wellaccepted approaches
- A small-BS (200 km away from the HAPS) could gather almost the same average power gain that it would receive from a macro-BS (1 km away) [1]
 - Almost LOS
 - Moderate shadowing/fading fluctuations due to lack of scattering

[1] G. K. Kurt *et al.*, "A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future," *IEEE Commun. Surv. Tutorials*, pp. 1–1, 2021.

Use cases of HAPS-SMBS (3)

(c) Covering unplanned events and filling coverage gaps

- Unexpected and temporary events such as flash crowds
- UAV-mounted aerial BSs and HAPS-SMBS: feasible solutions
- Required the HAPS-SMBS to steer a beam in a targeted direction

Use cases of HAPS-SMBS (4)

(d) Supporting and managing aerial networks

- Control and manage the UAV network
- Collect data and support computational offloading from UAVs
- Requires seamless connectivity between UAV nodes and the HAPS-SMBS

Use cases of HAPS-SMBS (5)

(e) Supporting intelligent transportation systems

Transport systems include urban area, remote area (highways, trains, flights, ships, ...) and future cargo drones.

Use cases of HAPS-SMBS (6)

(f) Serving as an interface with LEO satellites and as an aerial data center

- Ground to HAPS
- HAPS to LEO satellites
- Possible links: RF, FSO

Classification

- Based on the physical principle of lifting force:
 - Aerodynamic (*khí động học*): heavier than air
 HAWK30 (HAPSMobile, Japan, 2017-Now)
 - Aerostatic (*khí tĩnh học*): lighter than air
 - Balloons, Google Loon (2011-2021)
 - Airships, Stratobus (France, 2014-Now)
- Aerodynamic HAPS: more preferable for unplanned events or emergency situations
- Aerostatic HAPS: more appropriate for longer-term use cases (supporting cargo drones, autonomous vehicles, computational offloading, ...)

Figure: Balloons (A), airships (B), and aerodynamic HAPS (C). Credit: <u>https://www.space4water.org/</u>

Specifications

Table: HAPS vs UAV, VLEO and LEO satellites [1]

Parameters	UAV	HAPS	VLEO	LEO
Operational altitude	100–400 m	20–50 km	250–500 km	500–2000 km
Cost	Low	Medium	Medium	High
Round-trip propagation delay	0.66-2.66 μs	0.13–0.33 ms	1.66–3.33 ms	3.33–13.33 ms
Communication endurance	Short	Long	Long	Long
Resource limitation	High	Low (empowered by solar battery charging)	High	High
Mobility	Varying speeds	Quasi-stationary	Fast	Fast
Coverage area	Small	Wider	Wider	Wider
Free space path loss (dB)	101–113	147–155	169–175	175–187

HAPS: - coverage diameter up to hundreds of km (e.g.: Stratobus, 500 km)

- stay airborne up to years (e.g.: Stratobus, 5 years with annual maintenance)

[1] M. S. Alam, G. K. Kurt, H. Yanikomeroglu, P. Zhu, and N. D. Dao, "High Altitude Platform Station Based Super Macro Base Station Constellations," *IEEE Commun. Mag.*, vol. 59, no. 1, pp. 103–109, Jan. 2021.

Specifications

FIGURE 3. Data rate vs transmit power of a vertical FSO link for different weather conditions. It is assumed that a HAPS-SMBS is placed at a distance of 18 km.

Example of achievable data rate versus transmit power of the FSO link between terrestrial smallcell BSs and HAPS-SMBS [1]

- Mostly affected by clouds and the rain
- Possible approach: use FSO for clear skies or foggy conditions, switch to RF during rainy conditions

[1] M. S. Alam, G. K. Kurt, H. Yanikomeroglu, P. Zhu, and N. D. Dao, "High Altitude Platform Station Based Super Macro Base Station Constellations," *IEEE Commun. Mag.*, vol. 59, no. 1, pp. 103–109, Jan. 2021.

Specifications

- Quasi-stationary position (*):
 - Avoid Doppler shift
 - No need for location tracking (compared to LEO satellites)
 - Mobility management (e.g., handoff) for other components
- Located in the stratosphere
 - Almost free from weather disturbance (lightning, thunderstorms, ...)
 - Almost absent of cloud (solar energy harvesting)

(*) Position of a HAPS should be maintained in a cylinder with a radius of 400 m and height of \pm 700m [1]

[1] ITU-R Rec. F.1500, "Preferred Characteristics of Systems in the Fixed Service Using High Altitude Platforms Operating in the Bands 47.2-47.5 GHz and 47.9-48.2 GHz," Geneva, Switzerland, Jan. 2000.

Figure: The stratosphere, Credit: Randy Russell, UCAR

Open Challenges (selected)

- Network Management/Control
 - Joint communications, control, computing, and caching in a HAPS-SMBS
 - Make the network more autonomous, self-organizing, self-configuring, and self-sustaining
 - For example: dynamic spectrum slicing to avoid under/over-utilization
- HAPS Constellations and Inter-HAPS Networking
 - Design of a HAPS mega-constellation and its interaction with satellite mega-constellation and the terrestrial network
 - Optimization of a HAPS constellation to maximize the QoS
 - Coordination among HAPS nodes to avoid interference, wasting resources, or overlapping footprints

Conclusions

- Potential opportunities and target use cases of HAPS-SMBS-aided VHetNet were discussed.
- While research on HAPS goes back to 1990s, the concept HAPS-SMBS has attracted new attention in recent years, especially for application in densely-populated areas.
- Specifications of HAPS networks in the new scenario are different from those of the past, and different from those of UAV networks/satellite constellation.

=> Further investigation is needed to realize the potentials of HAPS in the next-generation communication systems.

Thank you for your listening

HAPS projects

Loon [74]	Aerostatic- (Balloon)	Subsidiary of: (Alphabet Inc.) Previously: (Google X)	United States	2011-2021	 Its mission was to connect people everywhere using a network of HAPS. It was the most mature project whose fleet constituted a meshed network managed by Loon SDN, which provided service to over 300,000 users. Last design was able to fly up to 312 days at an altitude around 18-23 km, with a 40 km coverage radius. In 2019, Loon's balloons accomplished over one million flight hours, flying for a total of around 40 million km.
Stratobus [82]	Aerostatic- (Airship)	Thales Alenia Space	France	2014-Now	 One of its goals is to provide 5G telecommunications. Its length and width are about (115 m x 34 m), and it can carry up to 450 kg payload for a 5-year mission with annual maintenance. It is positioned at an altitude of 20 km and can cover up to 500 km in diameter. It is expected to be on the market in 2021.
HAWK30 [83]	Aerodynamic	HAPSMobile	Japan	2017-Now	 Its objective is to connect mobiles, UAVs, and IoT nodes around the world. It has a wingspan of 78 m, deployed at an altitude of 20 km, and can provide a 100 km coverage radius for several months.
PHASA-35 [84], [85]	Aerodynamic	BAE Systems and Prismatic	United Kingdom	2018-Now	 It is designed for a variety of services including 5G communications. It has a payload capacity of 15 kg and can remain airborne continuously for up to one year It can maintain an altitude of 17-21 km with a payload power capacity of 300-1,000 w, and it can cover a radius of up to 200 km.

19

- PHASA 35 Payload trials 2020 https://youtu.be/0C25oOIPRc8
- Stratobus: halfway between a drone and a satellite! Official video <u>https://youtu.be/nvmkendJI2Y</u>

Spectrum bands for HAPS [1]

Fig. 4: An overview of the spectrum bands dedicated for HAPS.

[1] G. K. Kurt *et al.*, "A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future," *IEEE Commun. Surv. Tutorials*, pp. 1–1, 2021.