A Review of RL Algorithms and Its Application in UAV-BS Deployment

Linh T. Hoang

Jan 17, 2023

Contents

Part I: A Review of RL Algorithms

- Reinforcement Learning: The Basics
- A Brief Intro to Deep Reinforcement Learning

Part II: RL for UAV-BS Deployment

- Deployment of UAV-mounted Base Stations
- Some Initial Results
- The Road Ahead

Part I: A Review of RL Algorithms

A Review of Machine Learning Paradigms

A Taxonomy of RL Algorithms

RL Formulation

- An agent learning to interact with its environment.
- At each time step, the agent receives the environment's state, and the agent must choose an appropriate action in response.
- One time step later, the agent receives a reward (the environment indicates whether the agent has responded appropriately to the state) and a new state.
- The agent aim to maximize the expected cumulative reward (i.e., the expected sum of rewards attained over all time steps).

The agent-environment interaction in reinforcement learning. (Sutton and Barto, 2017)

Example: An RL agent learn how to walk (1/2)

https://deepmind.google/discover/blog/producing-flexible-behaviours-in-simulated-environments/

(Google DeepMind) Emergence of Locomotion Behaviours in Rich Environments https://www.youtube.com/watch?v=hx_bgoTF7bs

Example: An RL agent learn how to walk (2/2)

Figure 3: Examples of the terrain types used in the experiments. Left to right and top to bottom: hurdles, platforms, gaps, slalom walls, variable terrain.

Figure 4: Walker skills: Time-lapse images of a representative Planar Walker policy traversing rubble; jumping over a hurdle; jumping over gaps and crouching to pass underneath a platform.

N. Heess et al., "Emergence of Locomotion Behaviours in Rich Environments." arXiv, 2017. doi: 10.48550/ARXIV.1707.02286.

RL Formulation using Markov Decision Process

A (finite) Markov Decision Process (MDP) is defined by:

- a (finite) set of states ${\cal S}$ (or ${\cal S}^+$, in the case of an episodic task)
- a (finite) set of actions A
- a set of rewards R.
- · the one-step dynamics of the environment
- ullet the discount rate $\gamma \in [0,1]$

At an arbitrary time step t, the agent-environment interaction has evolved as a sequence of states, actions, and rewards

$$(S_0, A_0, R_1, S_1, A_1, \dots, R_{t-1}, S_{t-1}, A_{t-1}, R_t, S_t, A_t).$$

When the environment responds to the agent at time step t+1, it considers only the state and action at the previous time step (S_t, A_t) .

$$p(s',r|s,a) \doteq \mathbb{P}(S_{t+1}=s',R_{t+1}=r|S_t=s,A_t=a)$$

for each possible s', r, s, and a. These conditional probabilities are said to specify the **one-step dynamics** of the environment.

The return (the cumulative reward) at time step t:

$$G_t := R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

In each time step, the agent select an action with a goal of maximizing the **expected (discounted)** return.

An example of MDP for RL formulation

https://python.plainenglish.io/understandingmarkov-decision-processes-17e852cd9981

State-Value Function and Bellman Equation

State-Value Functions

• The **state-value function** for a policy π is denoted v_π . For each state $s \in \mathcal{S}$, it yields the expected return if the agent starts in state s and then uses the policy to choose its actions for all time steps. That is, $v_\pi(s) \doteq \mathbb{E}_\pi[G_t|S_t = s]$. We refer to $v_\pi(s)$ as the **value of state** s **under policy** π .

The discounted return (cumulative reward) at time t: $G_t := R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots$

Bellman Equations

• The Bellman expectation equation for v_π is: $v_\pi(s) = \mathbb{E}_\pi[R_{t+1} + \gamma v_\pi(S_{t+1})|S_t = s]$

Optimality

• A policy π' is defined to be better than or equal to a policy π if and only if $v_{\pi'}(s) \geq v_{\pi}(s)$ for all $s \in \mathcal{S}$.

Action-Value Function and Optimal Policies

Action-Value Functions

- The action-value function for a policy π is denoted q_{π} . For each state $s \in \mathcal{S}$ and action $a \in \mathcal{A}$, it yields the expected return if the agent starts in state s, takes action a, and then follows the policy for all future time steps. That is, $q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t|S_t=s,A_t=a]$. We refer to $q_{\pi}(s,a)$ as the value of taking action a in state s under a policy π (or alternatively as the value of the state-action pair s,a).
- All optimal policies have the same action-value function q_* , called the **optimal action-** value function.

Optimal Policies

• Once the agent determines the optimal action-value function q_* , it can quickly obtain an optimal policy π_* by setting $\pi_*(s) = \arg\max_{a \in \mathcal{A}(s)} q_*(s,a)$.

The discounted return (cumulative reward) at time t: $G_t := R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots$

The problem now is how to estimate the optimal value function q*(s,a)

Q-Table for the action-value function $q_{\pi}(s,a)$

https://wikidocs.net/174536

RL Solution: Monte Carlo Control

How to estimate the value function q(s,a)?

MC Control alternates between policy evaluation and policy improvement steps to recover the optimal policy π *.

Monte Carlo Control

RL Solution: Temporal Difference Control

Monte Carlo (MC) control methods require an agent to complete an entire episode of interaction before updating the Q-table.

Temporal Difference (TD) methods will instead update the Q-table <u>after</u> every time step.

```
Algorithm 14: Sarsamax (Q-Learning)
 Input: policy \pi, positive integer num_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
 Output: value function Q (\approx q_{\pi} \text{ if } num\_episodes \text{ is large enough})
 Initialize Q arbitrarily (e.g., Q(s,a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
 for i \leftarrow 1 to num\_episodes do
     \epsilon \leftarrow \epsilon_i
     Observe S_0
     t \leftarrow 0
     repeat
          Choose action A_t using policy derived from Q (e.g., \epsilon-greedy)
          Take action A_t and observe R_{t+1}, S_{t+1}
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))
         t \leftarrow t + 1
     until St is terminal:
 end
 return Q
```

 $\triangleright Q(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q(s_t, a_t)$

How to estimate the value function q(s,a)?

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (\underline{G_t} - \underline{Q(S_t, A_t)})$$
alternative current estimate estimate

(From Temporal-Difference Control)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \underbrace{(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))}_{\substack{\text{alternative} \\ \text{estimate}}} - \underbrace{Q(S_t, A_t)}_{\substack{\text{current} \\ \text{estimate}}}$$

TD Control: Sarsa Algorithm

RL in Continuous Space

Instead of using a Q-Table, we can adopt Deep Neural Networks (DNN) as Nonlinear Function Approximation for the value functions.

$$\begin{split} \hat{v}(s,\mathbf{w}) = & f\Big(\mathbf{x}(s)^{\top}\!\!\cdot\!\mathbf{w}\Big) \\ \Delta \mathbf{w} = & \alpha\Big(v_{\pi}(s) - \hat{v}(s,\mathbf{w})\Big) \,\nabla_{\!\mathbf{w}}\,\hat{v}(s,\mathbf{w}) \\ \hline \\ \mathbf{pradient \ descent \ update \ rule} \end{split}$$

Deep Reinforcement Learning: An Example

Reinforcement Learning (RL): use Q-tables as an estimate of the value functions.

Deep RL: adopt deep neural networks (DNN) to estimate the value functions or directly form up a policy.

Example: Google DeepMind's Deep Q-Network (DQN) for playing Atari games [1].

Demon Attack

Training the neural network in Deep Q-Network [1]

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}) \right)^{2} \right]$$

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = -2 \left(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})$$

$$\Delta \mathbf{w} = -\alpha \frac{1}{2} \nabla_{\mathbf{w}} J(\mathbf{w})$$

$$= \alpha \left(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})$$

$$\Delta \mathbf{w} = \alpha \left(\underbrace{R + \gamma \max_{a} \hat{q}(S', a, \mathbf{w}) - \hat{q}(S, A, \mathbf{w})}_{\text{TD target}} \right) \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})$$

$$\frac{1}{\text{TD target}} \quad \text{current value}$$

$$\frac{1}{\text{TD error}}$$

Q-Learning Update [1]

Value-Based and Policy-Based Methods

Value-Based Methods:

Interaction → Estimate the Action-Value Function → Optimal Policy

Policy-Based Methods:

Interaction → Estimate Value Functions → Optimal Policy

Why Policy-Based Methods?

- 1. Simplicity (A direct mapping from the environment's state to the agent's action)
- 2. Stochastic policies
- 3. Continuous action space

Actor-Critic Methods

Actor-Critic: A trade-off between value-based and policy-based RL agents

Actor:

- Policy-based
- Learn to make a good decision (evaluated based on metrics of the critic)

Critic:

- Value-based
- Learn to estimate (predict) the state-value function using the TD estimate

Part II: RL for UAV-BS Deployment

A Scenario for UAV-BS Deployment

One UAV-BS is deployed to complement the terrestrial BS (macro BS).

the UAVs since the terrestrial

Methodology: A2C Algorithm (1/2)

A2C = Advantage Actor-Critic (the synchronous version of the A3C [1] --Asynchronous Advantage Actor-Critic)

Actor: outputs logits for a categorical probability distribution over all possible actions.

Critic: estimates the state-value function of the environment's state.

[1] V. Mnih et al., "Asynchronous methods for deep reinforcement learning," in Proceedings of the 33rd International Conference on Machine Learning (ICML), vol. 48, 2016, p. 1928–1937.

Figure 2: A2C Method

Methodology: A2C Algorithm (2/2)

- State: The users' and UAV-BS's coordinates
- Actions: move to the (1)-north,
 (2)-west, (3)-south, (4)-east, or
 (5)-remain stationary (no movement)
- Reward:
 - +1 if d(t+1) > d(t), -1 if d(t+1) < d(t),
 - -0.1 if d(t+1) = d(t)

(d(t): the average data rate of all users at time t)

Figure 2: A2C Method

Initial Results (1/2)

The agent gradually forms better movement policy for the UAV-BS with higher rewards

The action selected by the agent gradually becomes less random (i.e., more intentional)

Initial Results (2/2)

To demonstrate the generalization ability of the agent after training, a trained A2C agent is tested to control the UAV-BS's movements in an episode.

- The test environment (i.e., the spatial distribution of users and the UAV's initial location) was set up randomly and not previously known by the agent.
- The agent was not trained during the test.

Behavior of an A2C agent after 4 hours of training

The Road Ahead

- Satellite-Air-Ground Integrated
 Networks (SAGIN): multiple UAV-BSs
 are deployed to complement the
 terrestrial BS.
- Take into account constraints of the FSO-based backhaul links with LEO satellites.
- Multiple UAV-BSs are expected to cooperate to efficiently serve the ground users → Multi-agent RL

References

- 1. R. S. Sutton and A. G. Barto, Reinforcement Learning, 2nd ed. The MIT Press, 2018.
- 2. V. Mnih et al., "Human-level control through deep reinforcement learning," *Nature*, vol. 518, no. 7540, pp. 529–533, Feb. 2015.
- 3. N. Heess et al., "Emergence of Locomotion Behaviours in Rich Environments." arXiv, 2017. doi: 10.48550/ARXIV.1707.02286.
- 4. J. Liu, Y. Shi, Z. Md. Fadlullah, and N. Kato, "Space-Air-Ground Integrated Network: A Survey," *IEEE Commun. Surv. Tutorials*, vol. 20, no. 4, pp. 2714–2741, 2018.
- 5. A. Feriani and E. Hossain, "Single and Multi-Agent Deep Reinforcement Learning for Al-Enabled Wireless Networks: A Tutorial," *IEEE Commun. Surv. Tutorials*, vol. 23, no. 2, pp. 1226–1252, 2021.

Thank you for your attention!