A Review of RL Algorithms and
Its Application in UAV-BS Deployment

Linh T. Hoang

Jan 17, 2023

Contents

Part |: A Review of RL Algorithms

e Reinforcement Learning: The Basics

e A Brief Intro to Deep Reinforcement Learning
Part Il: RL for UAV-BS Deployment

e Deployment of UAV-mounted Base Stations
e Some Initial Results
e The Road Ahead

Part |: A Review of RL Algorithms

A Review of Machine Learning Paradigms

Supervised Learning

Training with Labeled Data

Application: Image Classification,
Speech Recognition, Regression, etc.

Machine Learning

Unsupervised Learning

Find hidden features of Unlabeled Data

Application: Clustering, Anomaly
Detection, Dimensionality Reduction, etc.

Reinforcement Learning

Training with no data beforehand but through
interactions with the environment

Application: Decision making, Robot
Navigation, Game Al, etc.

A Taxonomy of RL Algorithms

RL Algorithms

Reinforcement Learning

MDP, Bellman Equation,
Optimal Policy

Monte Carlo Control

Temporal-Difference
Control: SARSA,
Q-Learning, Expected
SARSA

(RL +

Deep Reinforcement Learning

Neural Networks)

Single-Agent

Multi-Agent

Value-Based

Policy-Based

Deep Q-Network (DQN)

REINFORCE

Dueling

Double DQN,

DQN, ...

Proximal Policy

QOptimization (PPO),

Actor-Critic:

A2C, A3C, GAE, DDPG, etc.

RL Formulation

e An agent learning to interact with its
environment.

e At each time step, the agent receives the
environment's state, and the agent must
choose an appropriate action in response.

e One time step later, the agent receives a
reward (the environment indicates whether
the agent has responded appropriately to the
state) and a new state.

e The agent aim to maximize the expected
cumulative reward (i.e., the expected sum
of rewards attained over all time steps).

state
Si

reward
R,

- Rr+1

’J Agent Il

s

-

S

1+1

_Eh

| Environment

-

],_

action
A,

The agent-environment interaction in reinforcement learning.

(Sutton and Barto, 2017)

Example: An RL agent learn how to walk (1/2)

reward

o

hitps://deepmind.google/discover/blog/producing
-flexible-behaviours-in-simulated-environments/

(Google DeepMind) Emergence of Locomotion
Behaviours in Rich Environments
https://www.voutube.com/watch?v=hx _bgoTF7bs

Example: An RL agent learn how to walk (2/2)

Figure 3: Examples of the terrain types used in the experiments. Left to right and top to bottom:
hurdles, platforms, gaps, slalom walls, variable terrain.

Figure 4: Walker skills: Time-lapse images of a representative Planar Walker policy traversing rubble;

3

jumping over a hurdle; jumping over gaps and crouching to pass underneath a platform.

N. Heess et al., “Emergence of Locomotion Behaviours in Rich Environments.” arXiv, 2017. doi:
10.48550/ARXIV.1707.02286.

RL Formulation using Markov Decision Process

A (finite) Markov Decision Process (MDP) is defined by:

= a(finite) set of states § (or § 7, in the case of an episodic task) -
\

« a(finite) set of actions A)

e asetofrewards R
* the one-step dynamics of the environment

* the discountrate y € [0, 1] .
_ Stote 1 Action
At an arbitrary time step {, the agent-environment interaction has evolved as a Reward 10 X

sequence of states, actions, and rewards

(So, Ao, R1, S1, A1, ..., Ri-1, St-1, At-1, Ry, St, As). "_,f 0.5

0.2
When the environment responds to the agent at time step £ + 1, it considers only Action
the state and action at the previous time step (St, Ay). Y
f(#,rle,a) = P(Spa = &, Biya = #|8 = 8, A = a) 0.7

for each possible s, 7, s, and a. These conditional probabilities are said to specify)
the one-step dynamics of the environment. An example of MDP for RL formulation
hitps://python.plainenglish.io/understanding-

markov-decision-processes-17e852cd9981

The return (the cumulative reward) at time step t:
Gy =Ry + ";."RFQ + ",’QRtAg o

In each time step, the agent select an action with a goal of maximizing the
expected (discounted) return.

State-Value Function and Bellman Equation

State-Value Functions

* The state-value function for a policy 7 is denoted v,.. For each state s € §, it yields
the expected return if the agent starts in state s and then uses the policy to choose its
actions for all time steps. That is,[v;(8) = E; |G
value of state s under policy 7.

S; = s||We refer to v;(s) as the

Bellman Equations

The discounted return (cumulative reward) at time t.

Gy = Ry + ’}’R{;Q + ‘}"QRpg e

* The Bellman expectation equation for v, is:fv;(s) = E;[R; .1 + yv:(5:.1)|S; = s

Optimality

* Apolicy ' is defined to be better than or equal to a policy 7 if and only if
v (8) > vy(s)foralls € S.

w

10

Action-Value Function and Optimal Policies

Action-Value Functions

The discounted return (cumulative reward) at time t.

* The action-value function for a policy 7 is denoted g;. For each state s € § and action . ‘
PR I Gy = Ry + ’}’R{;Q + ‘}"JRpg e

a € A, ityields the expected return if the agent starts in state s, takes action a, and
then follows the policy for all future time steps. That is,

g-(s,a) = E;[G4|S; = s, A; = al|We refer to g, (s, a) as the value of taking action w
a in state s under a policy 7 (or alternatively as the value of the state-action pair

s, a).

* All optimal policies have the same action-value function g,, called the optimal action-
value function.

The problem now is how
to estimate the optimal
value function g*(s,a)

Optimal Policies

o O

¢ Once the agent determines the optimal action-value function g., it can quickly obtainan o
optimal policy T, by setting|m.(s) = arg max,- 4(s) ¢«(s, a).

11

Q-Table for the action-value function ¢, (s, a)

Agent

states

actions

ag

ay as

So

Q(sﬂa aD)

Q{Su,ﬂl) Q(Sogﬂz)

St

Q(s1,a0)

Q(s1,a1)|Q(s1,a2)

Reward r

Take action a

Sy

Q(s2,a9)

Q(s2,a1)|Q(s2,a2)

Observe state s + s/

Y

<

Environment

https://wikidocs.net/174536

How to estimate the value

function q(s,a)?

12

RL Solution: Monte Carlo Control

MC Control alternates between policy evaluation and policy
improvement steps to recover the optimal policy .

Algorithm 11: First-Visit Constant-a (GLIE) MC Control
Input: positive integer num_episodes, small positive fraction o, GLIE {¢;}
Output: policy 7 (& 7. if num_episodes is large enough)
Initialize @ arbitrarily (e.g., Q(s,a) =0 for all s € § and a € A(s))

for i «+- 1 to num_episodes do
€€

7 ¢ e-greedy(Q)

Generate an episode Sy, Ag, Ry, ..., St using 7

fort+< 0toT—1do

if (S, A;) is a first visit (with return G;) then
| Q(St, At) + Q(S:, At) + (Gt — Q(S:, Ar))

end
end (

return m

How to estimate the
value function q(s,a)?

Policy Evaluation /\

collect an episode with 71 Policy Improvement
& /
update the Q-table ™ 4 e-greedy(Q)
e T

/

Monte Carlo Control

Q(S:, Ap) « (1 — @)Q(St, Ar) + Gy

13

RL Solution: Temporal Difference Control

Monte Carlo (MC) control methods require an agent to complete an entire
episode of interaction before updating the Q-table.

Temporal Difference (TD) methods will instead update the Q-table after
every time step.

Algorithm 14: Sarsamax (Q-Learning)
Input: policy 7, positive integer num_ episodes, small positive fraction «, GLIE {¢;}
Output: value function @ (= g, if num_episodes is large enough)
Initialize @ arbitrarily (e.g., @(s,a) =0 for all s € S and a € A(s), and Q(terminal-state, -) = 0)

for i « 1 to num_episodes do
€ €

Observe Sy

t+0

repeat
Choose action A; using policy derived from @ (e.g., e-greedy)
Take action A, and observe R;.q,S;11

------ S QSt, Ar) « Q(Si, As) + & Begr +ymax, Q(Sis1,a) — Q(S:, Ar))
t—t+1

until S; is terminal;

end

return @

How to estimate the
value function q(s,a)?

(From Monte Carlo Control)

Q(St, Ap) + Q(5;. ."lf}'f‘(l(ﬂ—()(.gf. Ap))

(From Temporal-Difference Control)

Q(St, Ap) + Q(St, At) + a(Re41 + vQ(St+1, A1) — Q(St, Ap))

alternative current
estimate estimate

TD Control: Sarsa Algorithm

learned value

3

""""""""""""""" Q(st,at) — (1—a)-Q(sr,ae) + a, | re + Y
- S e 412
old value learning rate reward discount factor

max Q(s4.1.a))
14

estimate of optimal future value

RL in Continuous Space

Instead of using a Q-Table, we can adopt Deep Neural Networks (DNN)
as Nonlinear Function Approximation for the value functions.

Aw =fl(r';lf-<l— r'l.m.w!) Vi (s, W)

15

Deep Reinforcement Learning: An Example

Reinforcement Learning (RL): use Q-tables as an estimate of the value functions.
Deep RL: adopt deep neural networks (DNN) to estimate the value functions or directly form up a policy.

1st hidden 2nd hidden 3rd hidden
layer layer layer

output
Q(s¢,a")

§ fully . fully 2 2
e i “.. connected :connected : Q(s¢,a%)
8x8x4 filter ™, . ™ § :
- -JEE |4 xax16 filter ™. :
— stride 2 I:L/’_O/O
84x84x4 20x20x16 9x9x32 256 4~18
Example: Google DeepMind’s Deep Q-Network (DQN) for playing Atari games [1]. Demon Attack

[1] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015. 16

Training the neural network in Deep Q-Network [1]

Jw)=E,[(4,(5,4)-a(s.4w))’ |

V. J(w)=-2(q,(5.A)-q(5.A,w))V, 4(5.A,w)

1
Aw =-a -V J(w)

= -4(5,A,w))V, 4(5,A,w)

Q-Learning Update [1]

[1] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

17

Value-Based and Policy-Based Methods

Value-Based Methods:

Interaction — Estimate the Action-Value Function — Optimal Policy
Policy-Based Methods:

Interaction — Estimate-VYatde+unretons — Optimal Policy

Why Policy-Based Methods?

1. Simplicity (A direct mapping from the environment’s state to the agent’s action)
2. Stochastic policies

3. Continuous action space

18

Actor-Critic Methods

- 3 O [0, Actor-Critic: A trade-off between
! value-based and policy-based RL agents
Variance / ‘ Actor:
N - Policy-based
ekt - - Learn to make a good decision
13, (evaluated based on metrics of the critic)
- T + Critic:
glas - Value-based
- Learn to estimate (predict) the state-value
.. function using the TD estimate
Policy-based agents: Value-based agents:

lower bias but higher variance : higher bias, but lower variance

19

Part ll: RL for UAV-BS Deployment

20

A Scenario for UAV-BS Deployment

One UAV-BS is deployed to
complement the terrestrial
BS (macro BS).

/ —_—'___\
Satellite

! | FSO-based
i1 backhaul link

Terrestrial
BS

Users in this area are served by
the UAVs since the terrestrial
BS's signal is weak

21

Methodology: A2C Algorithm (1/2)

A2C = Advantage Actor-Critic - s S .
(the synchronous version of the A3C [1] :
--Asynchronous Advantage Actor-Critic) o ﬁ Action
Actor: outputs logits for a categorical Actor * EN:'RONMENT
probability distribution over all possible
actions. e Critic ol L
ction V(s) : I*)
Critic: estimates the state-value function of Zt;te — ﬁ :
the environment's state. ’ I N
’ Advantage = Q(s.a) - V(s) |‘ Hewen]
5P ETU——— S

[1] V. Mnih et al., “Asynchronous methods for deep reinforcement .
learning,” in Proceedings of the 33rd International Conference on Flgure 2: A2C Method
Machine Learning (ICML), vol. 48, 2016, p. 1928-1937.

22

Methodology: A2C Algorithm (2/2)

e State: The users’ and UAV-BS's F— AGE"T
coordinates |

e Actions: move to the (1)-north, State —o ﬁ Action
(2)-west, (3)-south, (4)-east, or :

* ENVIRONMENT

Actor 5 0 vt pan
: o o

O LAV pasition

(5)-remain stationary (no movement)

e Reward: "'" ’T
+1 ifd(t+1) (t) | Acton ﬁ V(s)

g d t , i State
-1 if d(t+1) < d(t), NEAE
-0.1 if d(t+1) = d(t) b
‘ Advantage = Q(s.a) - V(s) I‘ Reward
(d(t): the average data rate of all users at time t) —

Figure 2: A2C Method

23

Initial Results (1/2)

The agent gradually forms better movement
policy for the UAV-BS with higher rewards

300

250

Episode Return
g 8

—y

o

o
Il

50

T T T T T T
2000 4000 6000 8000 10000 12000
Number of Episodes

The action selected by the agent gradually

becomes less random (i.e., more intentional)

1.65
1.60
1.55
1.50 4

1.45 4

Entropy

1.40
1.35
1.30 4

1.25

T
0 2000

4000 6000
Number of Updates

T
8000

10000

24

Initial Results (2/2) »

o)
800 - o r
To demonstrate the generalization ability of the i (; & = £ o g |
agent after training, a trained A2C agent is tested to ®
control the UAV-BS’s movements in an episode. 7007
) ,) E 6501 © .
- The test environment (i.e., the spatial = o

distribution of users and the UAV’s initial 600 1
location) was set up randomly and not

550 1
previously known by the agent.
500 A
i 7 u ! iti
- The agent was not trained during the test. B Cine it comen resarmie
450 A

X The UAV's final position

650 700 750 800 850 900 950 1000
x (m)

Behavior of an A2C agent after 4 hours of training

The Road Ahead

Satellite-Air-Ground Integrated
Networks (SAGIN): multiple UAV-BSs
are deployed to complement the
terrestrial BS.

Take into account constraints of the
FSO-based backhaul links with LEO
satellites.

Multiple UAV-BSs are expected to
cooperate to efficiently serve the ground

users — Multi-agent RL

Multi-agent RL for
playing Go

26

References

1.

R. S. Sutton and A. G. Barto, Reinforcement Learning, 2nd ed. The MIT Press, 2018.

2. V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol.

3.

518, no. 7540, pp. 529-533, Feb. 2015.

N. Heess et al., “Emergence of Locomotion Behaviours in Rich Environments.” arXiv,
2017. doi: 10.48550/ARXIV.1707.02286.

J. Liu, Y. Shi, Z. Md. Fadlullah, and N. Kato, “Space-Air-Ground Integrated Network: A
Survey,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2714-2741, 2018.

A. Feriani and E. Hossain, “Single and Multi-Agent Deep Reinforcement Learning for
Al-Enabled Wireless Networks: A Tutorial,” IEEE Commun. Surv. Tutorials, vol. 23, no.
2, pp- 12261252, 2021.

27

Thank you for your attention!

