Reading book seminar Channel Capacity

Vu Quang Minh

Computer Communications Laboratory, The University of Aizu

Contents

 \odot Fundamentals of Information Theory

 \odot Capacity of Wireless Channel

o Channel Capacity

 \circ AWGN Channel Capacity

• Wireless Fading Channel

○ Flat Fading Channel Capacity

Fundamentals of information theory

Information

- The "knowledge" we learned about something that we had not been known before
- Example: a sport event
 - Before the event: the results is not known already
 - After the event: the winner is known \rightarrow giving some new "information"
- The mathematical theory of information is based on probability theory and statistic

Properties of information

- **<u>Property 1</u>**: The more unlikely or unexpected an event is, the more surprising it is \rightarrow more "information"
 - Example:
 - Vietnam National Football team won AFF Cup
 - Vietnam National Football team will attend World Cup \rightarrow more information
- **<u>Property 2:</u>** Information is additive

Self-information

- Self-information is a measure of the information content associated with an event in a probability space
- Random variable (RV) X
 Event w₁ w₂ ... w_n
 Probability p(w₁) p(w₂) p(w)
- The self-information of the event w_i is defined as:

$$I(w_i) = log\left(\frac{1}{p(w_i)}\right) = -log(p(w_i))$$

 $p(w_i) = 1 \rightarrow$ the event is certain to occur \rightarrow no information

 $p(w_i) = 0 \rightarrow$ the event is impossible \rightarrow infinite information

• Unit: bits (log base 2), nats (log base e), Hartley (log base 10)

Entropy

- Average of self-information over the event space
 - Discreate RV

$$H(X) = \sum_{i} p(w_i) I(w_i) = -\sum_{i} p(w_i) log(p(w_i))$$

• Continuous RV

$$H(X) = \int p(w_i)I(w_i)dw = -\int p(w_i)\log(p(w_i))dw$$

• Measure the uncertainty of a RV

Entropy (cont.)

- Example: a sport event
 - Equal probability

	Event	Team A win	Team B win	
	Probability	0.5	0.5	
H(X	T) = -0.5lo	g(0.5) - 0.5l	og(0.5) = 1	(bit)

• Unequal probability

Event	Team A win	Team B win
Probability	0.2	0.8

H(X) = -0.2log(0.2) - 0.8log(0.8) = 0.722 (bit)

 \rightarrow The higher the entropy is, the more difficult we can guess the result

Joint Entropy

• Joint entropy of two RVs X and Y

$$H(X,Y) = -\sum_{x,y} p(x,y) \log(p(x,y))$$

p(x, y) is the joint probability of X and Y

- Properties
 - $H(X,Y) \ge \max[H(X),H(Y)]$
 - $H(X,Y) \leq H(X) + H(Y)$, equality happens when X and Y are independent

Conditional Entropy

• Entropy of a RV Y given a RV X is known

$$H(Y|X) = -\sum_{x,y} p(x,y)\log(p(x,y)) = -\sum_{x,y} p(x,y)\log\left(\frac{p(x,y)}{p(x)}\right)$$

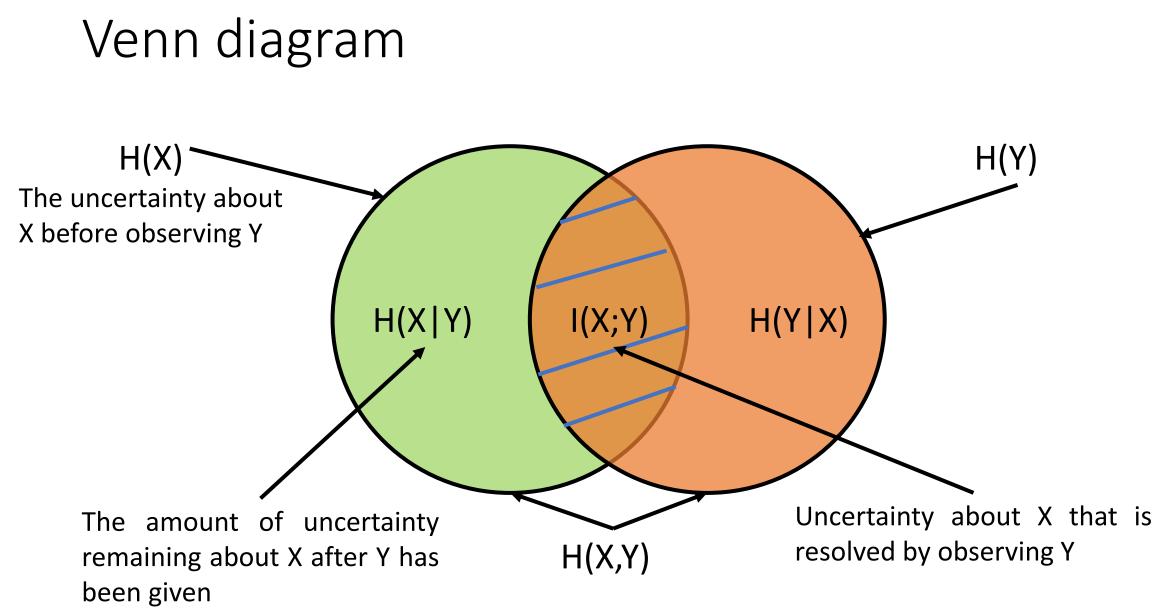
- The average uncertainty of Y given knowledge about X
- The uncertainty of Y is reduced $(H(Y|X) \le H(X))$
- Properties
 - H(Y|X) = H(X,Y) H(X)
 - If X and Y are independent: H(Y|X) = H(Y)

Mutual Information

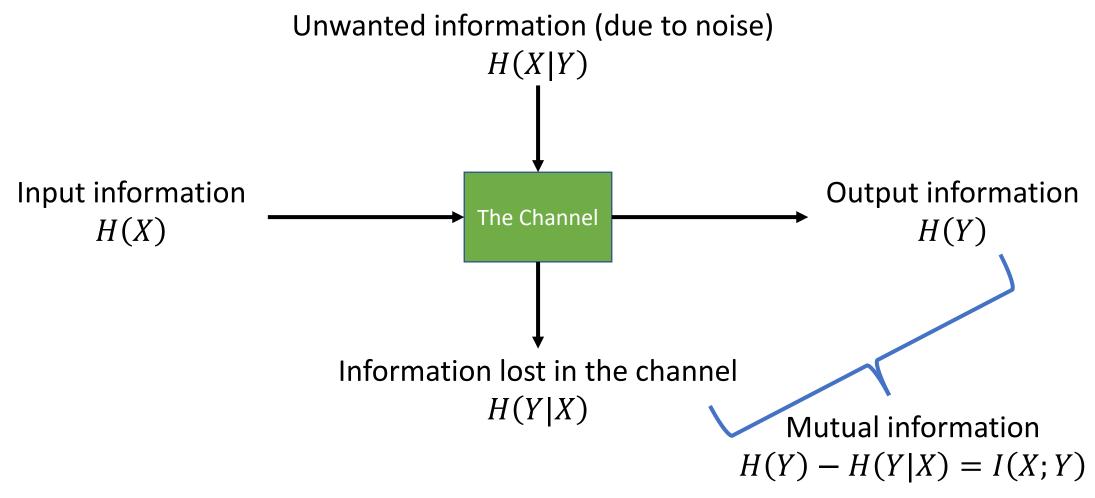
• The mutual information between X and Y is defined as $\sum_{n=1}^{\infty} \frac{p(x, y)}{p(x, y)}$

$$I(X;Y) = \sum_{x,y} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

- Measure the information that X and Y share: It measure how much knowing one of these variables reduce uncertainty about the other
- Properties
 - I(X,Y) = H(X) H(X|Y) = H(Y) H(Y|X)
 - X and Y are independent \rightarrow knowing X does not give any information about Y and vice verse $\rightarrow I(X, Y) = 0$
 - X = Y \rightarrow knowing X determines the value of Y and vice verse $\rightarrow I(X, Y) = H(X) = H(Y)$



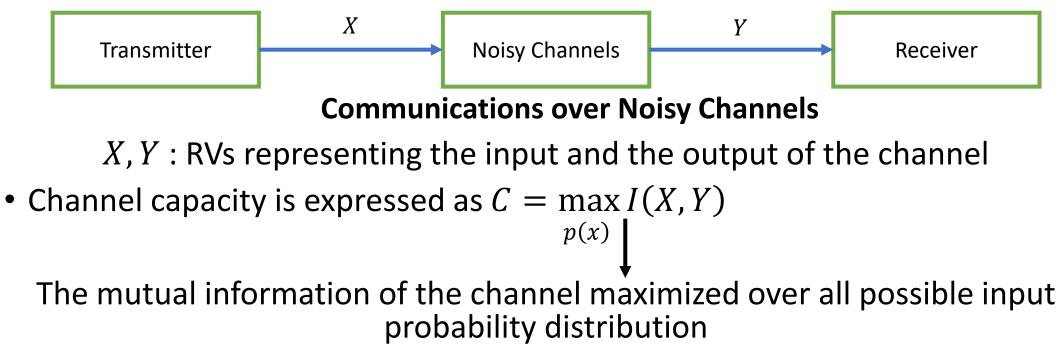
Another interpretation



Capacity of Wireless Channel

Channel Capacity

- Definition: The **maximum information rate** that can be *reliably* transmitted over a communication channel
 - *reliably*: negligible probability of error



AWGN Channel Capacity

• Information Capacity Theorem (Shannon-Hartley Law):

The information capacity of a continuous channel of bandwidth W Hz, perturbed by AWGN of power spectral density $N_0/2$ and bandlimited also to W Hz, is given by

$$C = W \log\left(1 + \frac{P}{N_0 W}\right)$$
 bits per second

where P is the average transmitted power and $\frac{P}{N_0W}$ is the signal-to-noise ratio or SNR.

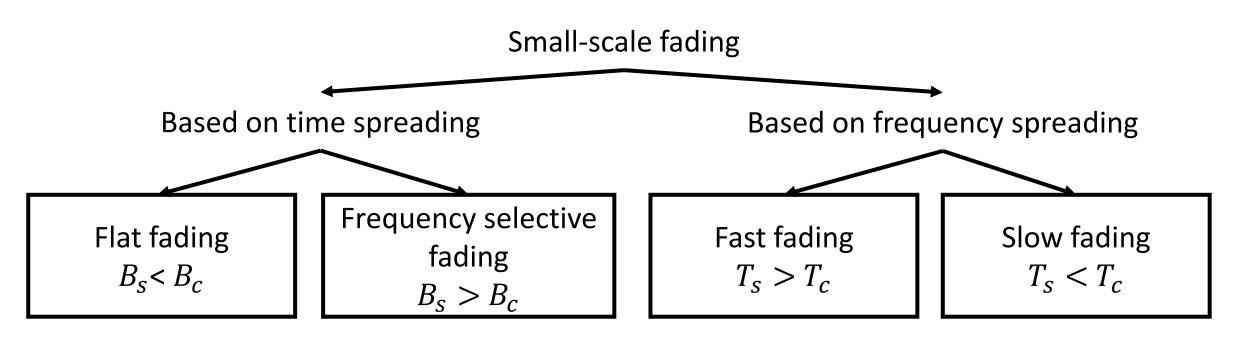
Wireless Fading Channel

- <u>Fading channel</u>: fluctuation in the transmitted signal power due to the uncertainty of the propagation medium
 - Path loss occurs due to the distance between transmitter and receiver
 - Large-scale fading occurs due to shadowing caused by varying degree of obstructions
 - Small-scale fading occurs due to multipath propagation
- Small-scale fading results in rapid and random fluctuations in the received signal power over a very short period time or very short distance
- \rightarrow Knowledge of the phenomenon of small-scale fading helps in effective system design

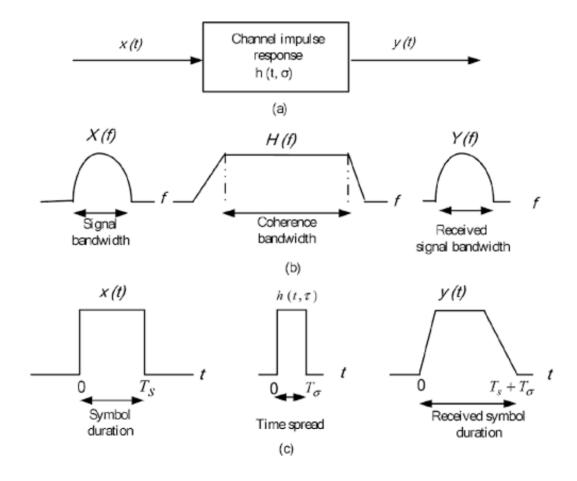
- Delay spread (T_{σ}) : different components reach at the receiver at different times in multipath propagation \rightarrow the received signal spreads over time domain
 - The pulse duration of the transmitted signal T_s
 - The received signal duration $T_s + T_\sigma$ (T_σ is delay spread)
- **Coherent Bandwidth (***B_c***)**: indicates the range of frequencies over which a channel is considered to remain static
 - Within the coherent bandwidth: all the frequency components experience the same channel response
 - The coherent bandwidth is derived from delay spread. They are inversely proportional

- **Doppler Spread** (B_{σ}) : A relative change in position of a transmitter of a receiver in dynamic multipath environment \rightarrow frequency shift \rightarrow spreading of signal in frequency domain
 - The transmitted signal bandwidth: B_s
 - The received signal bandwidth: $B_s + B_\sigma$ (B_σ is Doppler spread)
- Coherent Time (T_c): indicates how often a channel changes its response
 - Within the coherent time: the channel response remain the same
 - The coherent time is derived from Doppler spread. They are inversely proportional

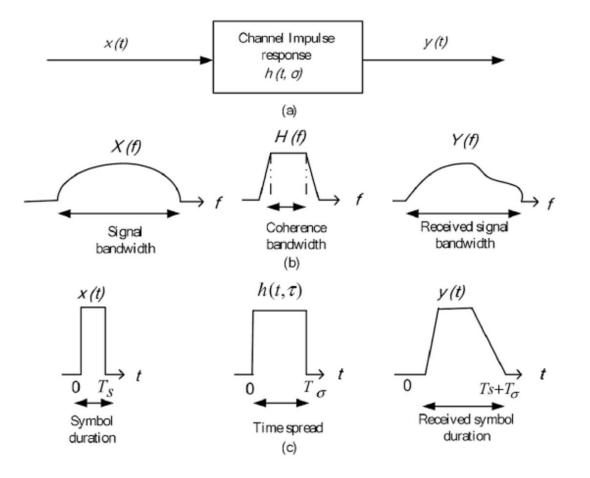
- Kinds of small-scale fading:
 - Signal bandwidth B_s , symbol period T_s
 - Coherent bandwidth B_c , coherent time T_c



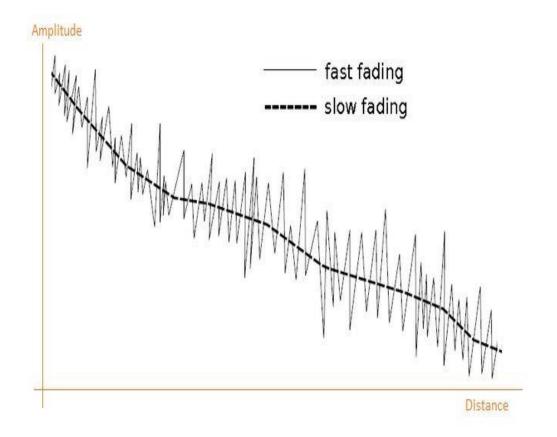
• Flat fading: signal propagates through the channel without any distortion (since the amount of channel gain offered across the entire signal bandwidth remains the same)

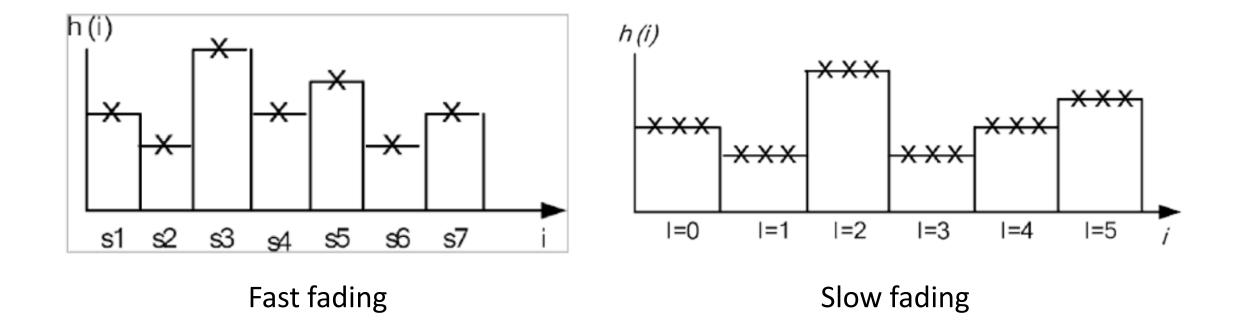


• Frequency selective fading: offers constant gain and linear phase bandwidth the for response smaller than the bandwidth of the signal \rightarrow different parts of the bandwidth signal suffer with different amount of channel gains



- Fast fading: channel response changes at very short intervals
- Slow fading: channel response changes at long intervals





Flat Fading Channel Capacity

• A discrete time flat fading channel can be represented as:

Y = hX + N

- h: channel gain, follow a distribution p(h)
- Also known as channel state information (CSI)
- For computation of capacity in flat fading channels, we consider
 - Channel distribution information (CDI): only p(h) is known at transmitter and receiver
 - Receiver CSI: h is known at the receiver, both transmitter and receiver know p(h)
 - Transmitter and Receiver CSI: transmitter and receiver know h and p(h)

Known CDI

- Finding the optimal input distribution is generally difficult
 - Depend on the nature of the fading distribution p(h)
 - Remain an open problem for almost all p(h)
- Solution is available for two specific distribution models:
 - i.i.d Rayleigh channels
 - Finite-state Markov channels

Receiver CSI

- The instant SNR is known to the receiver
- Transmitter can not adapt its transmission strategy relative to the CSI
- Two channel capacity definitions in receiver CSI
 - Shannon (ergodic) capacity
 - Capacity with outage

- Shannon (ergodic) capacity
 - When fading is fast, the signal is transmitted over the time duration that contain N coherence time period T_c , where in N >> 1
 - The transmission is sufficiently long and the fading is fast, all possible channel gain realizations g[i] = |h[i]|² can take place → the channel capacity can be calculated by averaging out channel capacities for different realizations
 - The corresponding channel capacity related to n-th gain realization

$$C[n] = B\log_2(1 + g[n]\overline{P}/N_0B)$$

• The Shannon capacity can be obtained by averaging over N coherent time periods as

$$C_N = \frac{1}{N} \sum_{n=1}^{N} B \log_2(1 + g[n]\overline{P}/N_0B)$$

• Now by letting $N \to \infty$, we obtain

$$C = E[B\log_2(1+\gamma)] = \int_0^{\infty} B\log_2(1+\gamma)f(\gamma)d\gamma$$

 γ is the instant SNR

• By applying the Jensen's inequality

$$C \leq \text{Blog}_2(1 + E[\gamma]) = B \log_2(1 + \overline{\gamma})$$

- Capacity with outage
 - Problems with Shannon capacity:
 - It assumes an ideal scenario
 - It only provides an upper bound for any practical system
 - Outage capacity is an alternative capacity definition in the presence of CSIR
 - Allows transmitted data to be decoded incorrectly with some probability
 - Applies to slowly-varying channel, where instantaneous SNR is constant over a large number of transmission and then changes to a new value based on the fading distribution

- Capacity with outage (cont.)
 - Transmitter fixes a minimum SNR γ_{min} for a data rate

 $C = B\log(1 + \gamma_{min})$

- If the received SNR is larger than or equal to γ_{min} , the data is correctly received
- If the received SNR is below than γ_{min} , the bits received can not be decoded correctly \rightarrow the receiver declares an outage with a probability

$$P_{out} = P(\gamma \le \gamma_{min})$$

• Outage capacity

$$C_{out} = (1 - P_{out})B\log_2(1 + \gamma_{min})$$

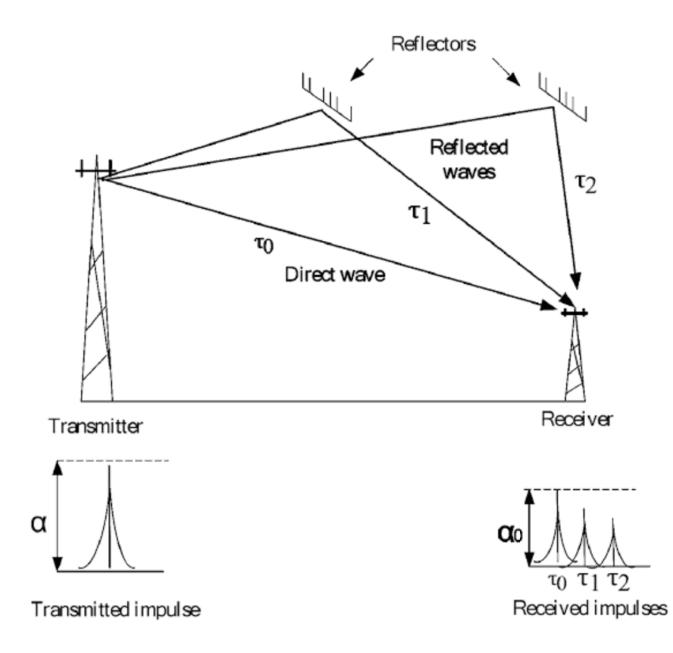
References

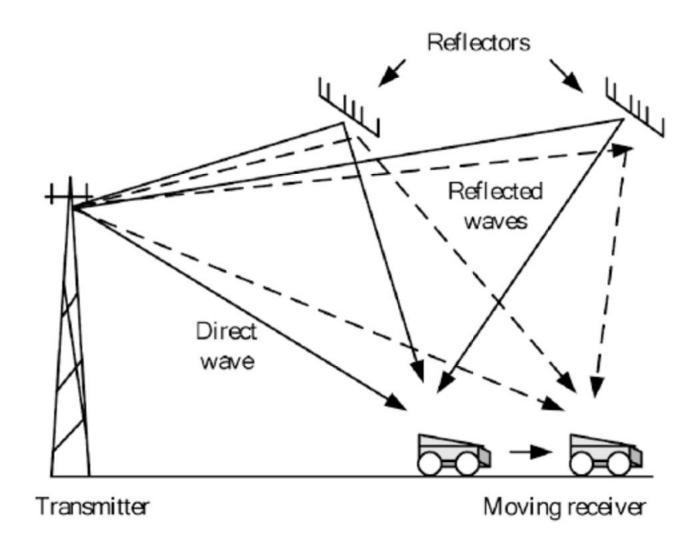
[1] Thanh V. Pham, "Channel Capacity", Lecture Notes.

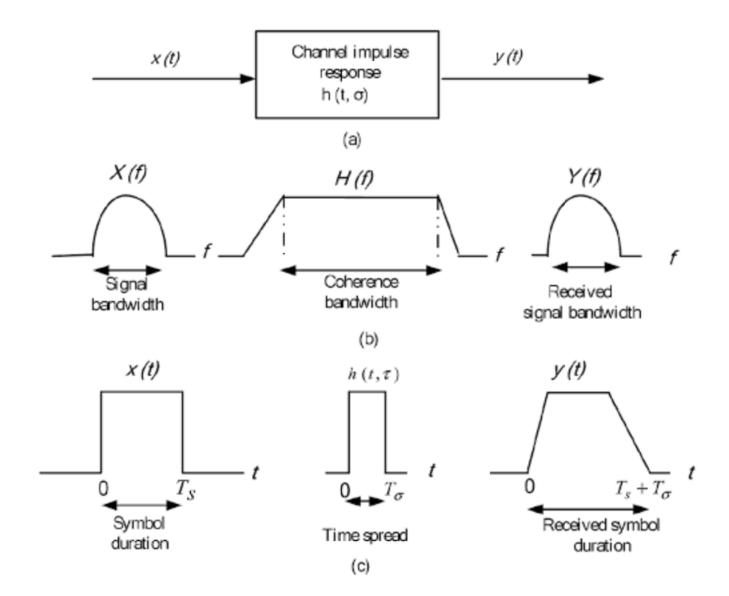
[2] A. Goldsmith, "Wireless Communication", Cambridge University Press.

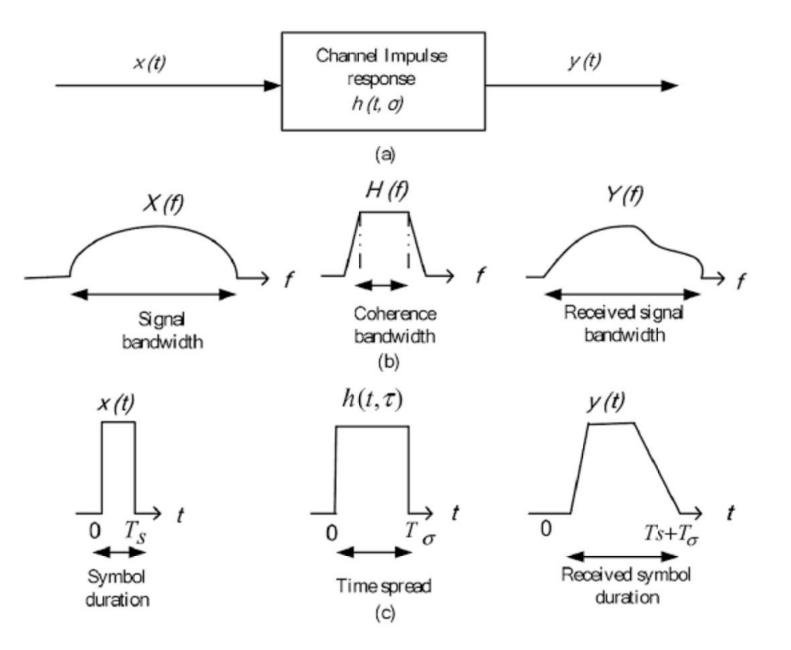
[3] Ivan B. Djordjevic, "Advanced Optical and Wireless Communication Systems", Springer

[4] D. Tse, P. Viswanath, "Fundamentals of Wireless Communications", Cambridge University Press Thank you











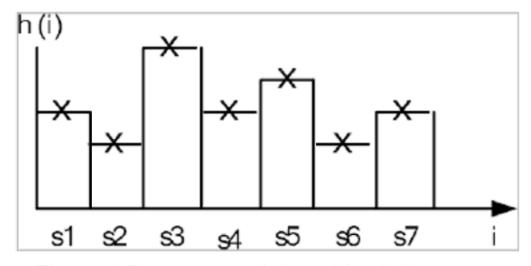
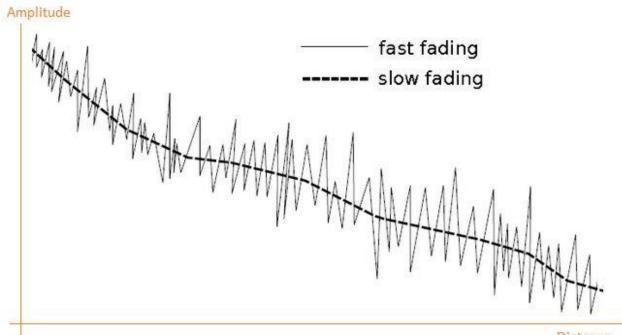


Figure 10.5 A conceptual view of fast fading process



Distance