Outage Performance of High Altitude Platform-Unmanned Aerial Vehicle Free Space Optical Links

Vu Quang Minh Computer Communications Laboratory The University of Aizu

Contents

- High Altitude Platform-Unmanned Aerial Vehicle (HAP/UAV)
- Related Works
- Goals
- System Model
- Channel Model
- Numerical and Simulation Results
- Conclusion

High Altitude Platform-Unmanned Aerial Vehicle (HAP-UAV)

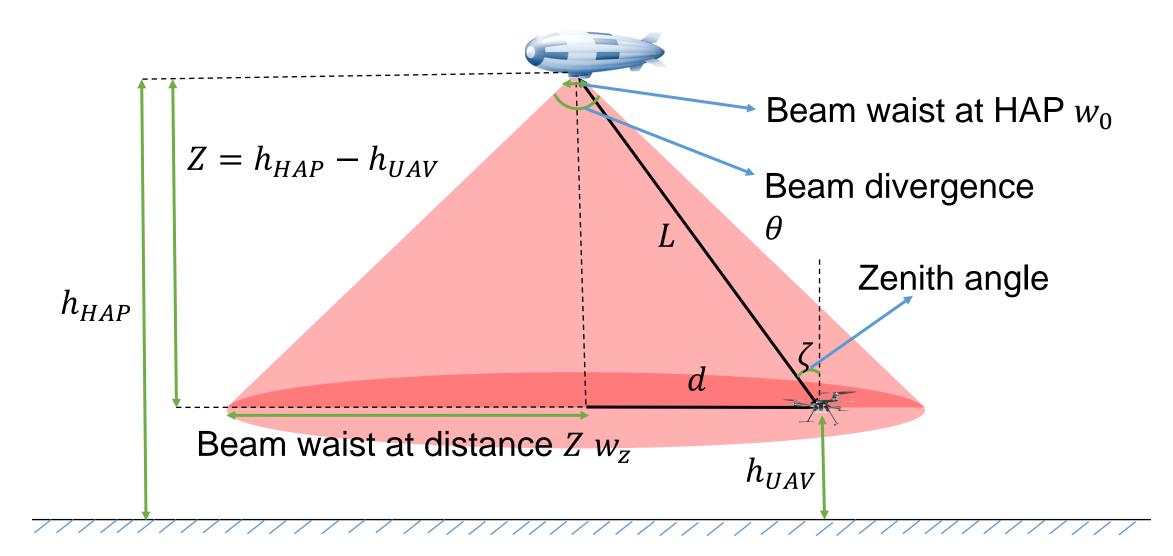
large

High Altitude Platforms can High Altitude Platform (HAP) provide wide-scale wireless for coverage geographic areas 20-25 km Unmanned Aerial Vehicle Unmanned Aerial Vehicle (UAV) Fixed wing UAV: can not hover (remain in one place in the air) <1 km Rotary wing UAV: can hover

Related Works

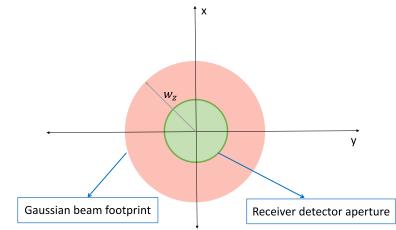
Papers Research	[1]	[2]	[3]
Free space optical (FSO) links	Inter-HAP links Inter-UAV links	Inter-HAP links	Inter-UAV links Ground-UAV links UAV-Ground links
Channel Modeling			
Gaussian beam			\boxtimes
Atm. Turbulence	\boxtimes	\boxtimes	\boxtimes
Hovering UAV			\boxtimes

[1] E. Leitgeb, K. Zettl, S. S. Muhammad, N. Schmitt and W. Rehm, "Investigation in Free Space Optical Communication Links Between Unmanned Aerial Vehicles (UAVs)," 2007 9th International Conference on Transparent Optical Networks, Rome, 2007, pp. 152-155

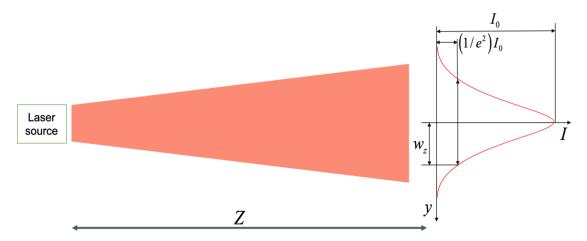

[2] H. Akbar and Iskandar, "Outage probability analysis for optical inter-platform HAPS-Link over log normal turbulence channels," 2015 9th International Conference on Telecommunication Systems Services and Applications (TSSA), Bandung, 2015, pp. 1-4.

[3] M. T. Dabiri, S. M. S. Sadough and M. A. Khalighi, "Channel Modeling and Parameter Optimization for Hovering UAV-Based Free-Space Optical Links," in *IEEE Journal on Selected Areas in Communications*, vol. 36, no. 9, pp. 2104-2113, Sept. 2018.

Goals


- Derive outage probability and outage capacity of the HAP-UAV FSO links
- Take into consideration
 - Gaussian beam
 - Geometric loss and pointing error loss (due to hovering UAV)
 - Atmospheric turbulence

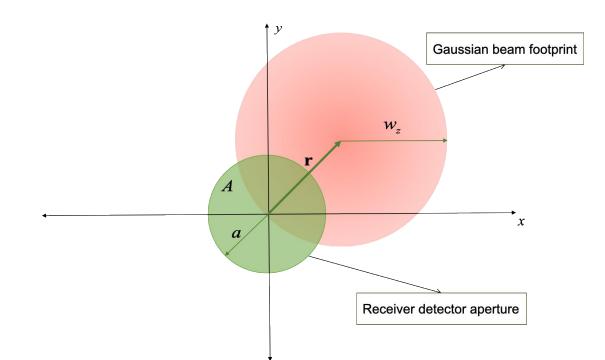
System Model


Gaussian beam

The Gaussian beam is considered at the HAP:

The Gaussian beam footprint at the Rx aperture

without pointing error.


The Gaussian beam within the transverse plane.

The normalized spatial distribution of the transmitted intensity at distance Z for a Gaussian beam is given as :

$$I_{beam}(\mathbf{p};z) = \frac{2}{\rho w_z^2} \exp\left[\frac{-2||\mathbf{p}||}{w_z^2}\right]$$

where $\mathbf{p} = [x, y]$ is the radial vector from the beam center, $||\mathbf{p}|| = \sqrt{x^2 + y^2}$ is the length of \mathbf{p}

 W_z is the beam waist at distance Z, $w_z = w_0 \left[1 + \left(\frac{z}{z_0}\right)^2\right]^{1/2}$, w_0 is the beam waist at laser source

Gaussian beam

The misalignment between the Tx and the Rx on the receiver detector plane

$$A_0 = \left[\operatorname{erf} \left(v \right) \right]^2$$
 is the fraction of the collected power
at $r_d = 0$

7

With a circular receiver detection aperture of radius a and a Gaussian beam profile I_{beam} , the attenuation because of geometric spread with pointing error **r** can be calculated as

$$h_{pe}(\mathbf{r},z) = \mathop{\grave{o}}_{A} I_{beam}(\mathbf{p}-\mathbf{r};z) d\mathbf{p}$$

 h_{pe} is the fraction of the power collected by the detector.

A is the detector area.

The integration can be approximated as the Gaussian form [5]

$$h_{pe}(r_d;z) \approx A_0 \exp\left(-\frac{2r_d^2}{w_{zeq}^2}\right)$$

$$r_d = ||\mathbf{r}||$$
 is the length of \mathbf{r} ; $v = \sqrt{\rho} a / \sqrt{2} w_z$

 $w_{zeq}^2 = w_z^2 \frac{\sqrt{\rho} \operatorname{erf}(v)}{2v \exp(-v^2)}$ is the equivalent beam width

Channel Model

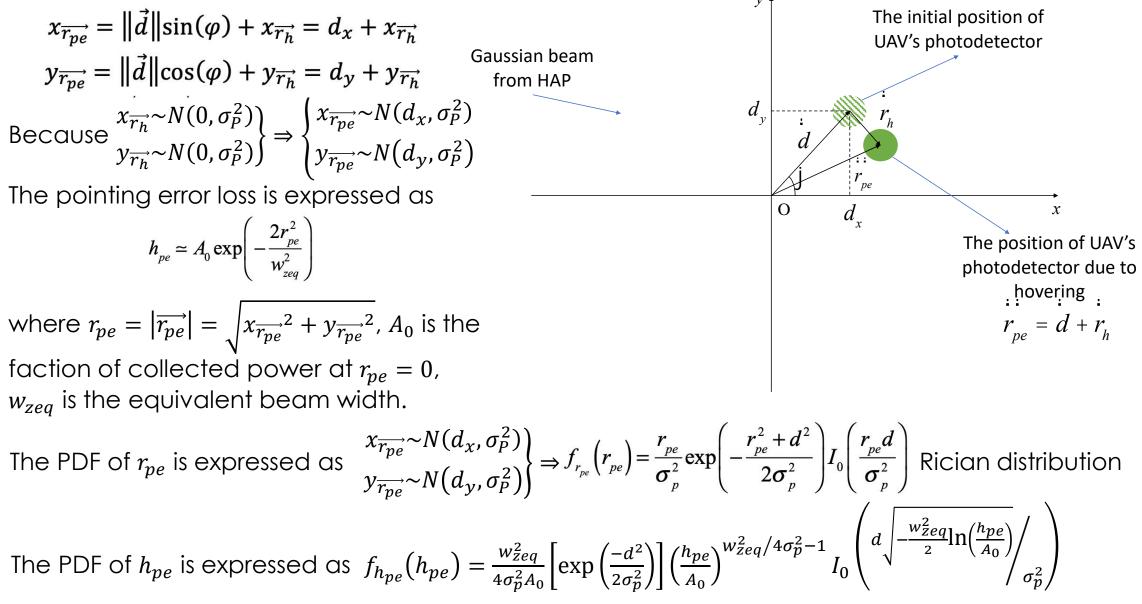
• The channel coefficient is calculated as $h = h_l h_{pe} h_a$

The atmospheric attenuation (h_l)

It is modeled by the exponential Beer-Lambert Law as

 $h_l = \exp(-\varepsilon L)$ where ε is the attenuation coefficient, L is the link distance.

The pointing error loss


It is caused by the different locations of the UAVs and the random displacement of the hovering UAVs

The atmospheric turbulence

The probability density function (PDF) of fading coefficient h_a is modeled by a Gamma-Gamma distribution. The scalar component of $\overrightarrow{r_{pe}}$ can be written as

9

The pointing error loss

The atmospheric turbulence

The PDF of h_a is given by

$$f_{G}(h_{a}) = \frac{2(\alpha\beta)^{\frac{\alpha+\beta}{2}}}{T(\alpha)T(\beta)}h_{a}^{\frac{\alpha+\beta}{2}-1}k_{\alpha-\beta}(2\sqrt{\alpha\beta}h_{a})$$

where α and β are the effective number of large-scale and small-scale eddies, respectively, and given as

$$\alpha = \left[\exp\left(\frac{0.49\sigma_R^2}{\left(1+1.11\sigma_R^{12/5}\right)^{7/6}}\right) - 1 \right]^{-1} \qquad \beta = \left[\exp\left(\frac{0.51\sigma_R^2}{\left(1+0.69\sigma_R^{12/5}\right)^{5/6}}\right) - 1 \right]^{-1} \right]^{-1}$$

where σ_R^2 is the Rytov variance for slant path FSO link and it is expressed as

$$\sigma_R^2 = 2.25k^{7/6} \sec^{11/6}(\zeta) \int_{h_{UAV}}^{h_{HAP}} C_n^2(h) \left(h - h_{UAV}\right)^{5/6} dh$$

where $k = 2\pi/\lambda$, λ is the operational wavelength, ζ is the zenith angle between UAV and HAP, and $C_n^2(h)$ is the refractive index structure parameter. $C_n^2(h)$ can be expressed as

$$C_n^2(h) = 0.00594 \left(\frac{w}{27}\right)^2 \left(10^{-5}h\right)^{10} \exp\left(-\frac{h}{1000}\right) + 2.7 \times 10^{-16} \exp\left(-\frac{h}{1500}\right) + A_0 \exp\left(-\frac{h}{100}\right)$$

where $A_0 = 1.7 \times 10^{-14} \text{m}^{-2/3}$ is the nominal value of C_n^2 at the ground, w is the wind speed in m/s, and h is the altitude in meters.

The PDF of $h = h_l h_{pe} h_a$ is given by

$$f_{h}(h) = \frac{2(\alpha\beta)^{\frac{\alpha+\beta}{2}}}{T(\alpha)T(\beta)} \frac{w_{zeq}^{2}}{4\sigma_{p}^{2}h_{l}A_{0}} \left[\exp\left(\frac{-d^{2}}{2\sigma_{p}^{2}}\right) \right] \left(\frac{h}{h_{l}A_{0}}\right)^{\frac{w_{zeq}^{2}}{4\sigma_{p}^{2}}-1} \int_{\frac{h}{h_{l}A_{0}}}^{\infty} h_{a}^{\frac{\alpha+\beta}{2}-1-\frac{w_{zeq}^{2}}{4\sigma_{p}^{2}}I_{0}} \left(\frac{d\sqrt{-\frac{w_{zeq}^{2}}{2}\ln\left(\frac{h}{h_{l}h_{a}A_{0}}\right)}}{\sigma_{p}^{2}}\right) k_{\alpha-\beta} \left(2\sqrt{\alpha\beta h_{a}}\right) dh_{a}$$

The instantaneous electrical signal-to-noise ratio (SNR) is defined as

$$\Upsilon = \frac{R^2 P_t^2 h^2}{\sigma_n^2}$$

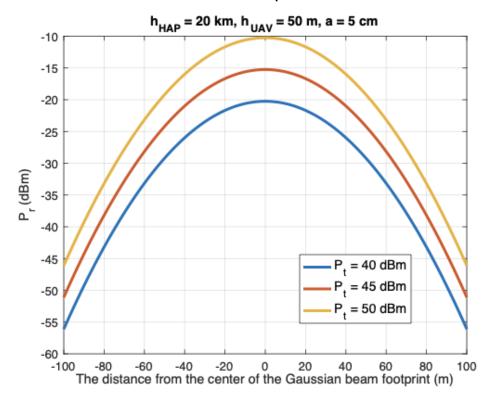
where R is the receiver's responsivity, P_t is the transmitted power, and σ_p^2 is the noise variance

Then, the PDF of Υ is expressed as

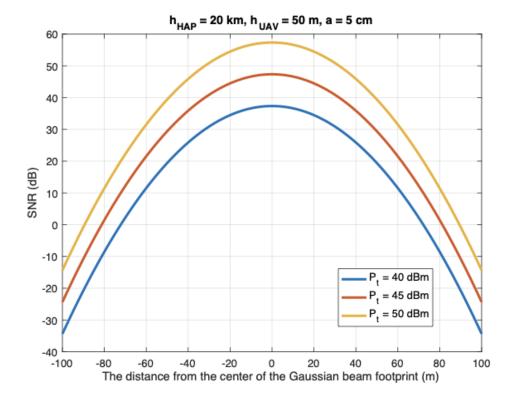
$$f_{\gamma}(\gamma) = \frac{\sigma_{n}^{2}}{R^{2}P_{t}^{2}} \frac{1}{2\sqrt{\frac{\gamma\sigma_{n}^{2}}{R^{2}P_{t}^{2}}}} \left[\exp\left(\frac{-d^{2}}{2\sigma_{p}^{2}}\right) \right] \frac{2(\alpha\beta)^{\frac{\alpha+\beta}{2}}}{T(\alpha)T(\beta)} \frac{w_{zeq}^{2}}{4\sigma_{p}^{2}h_{t}A_{0}} \left(\sqrt{\frac{\gamma\sigma_{n}^{2}}{R^{2}P_{t}^{2}}} \frac{1}{h_{t}A_{0}}\right)^{\frac{w_{zeq}^{2}}{4\sigma_{p}^{2}}-1} \int_{\sqrt{\frac{\gamma\sigma_{n}^{2}}{R^{2}P_{t}^{2}}}}^{\infty} h_{a}^{\frac{\alpha+\beta}{2}-1-\frac{w_{zeq}^{2}}{4\sigma_{p}^{2}}I_{0}} \left(\frac{d\sqrt{-\frac{w_{zeq}^{2}}{2}\ln\left(\sqrt{\frac{\gamma\sigma_{n}^{2}}{R^{2}P_{t}^{2}}} \frac{1}{h_{t}h_{a}A_{0}}\right)}}{\sigma_{p}^{2}}\right) k_{\alpha-\beta} \left(2\sqrt{\alpha\beta h_{a}}\right) dh_{a}^{\frac{\alpha+\beta}{2}-1} \int_{\sqrt{\frac{\gamma\sigma_{n}^{2}}{R^{2}P_{t}^{2}}}}^{\infty} h_{a}^{\frac{\alpha+\beta}{2}-1-\frac{w_{zeq}^{2}}{4\sigma_{p}^{2}}I_{0}} \left(\frac{d\sqrt{-\frac{w_{zeq}^{2}}{2}\ln\left(\sqrt{\frac{\gamma\sigma_{n}^{2}}{R^{2}P_{t}^{2}}} \frac{1}{h_{t}h_{a}A_{0}}\right)}}{\sigma_{p}^{2}}\right) k_{\alpha-\beta} \left(2\sqrt{\alpha\beta h_{a}}\right) dh_{a}^{\frac{\alpha+\beta}{2}-1} \int_{\sqrt{\frac{\gamma\sigma_{n}^{2}}{R^{2}P_{t}^{2}}}}^{\infty} h_{a}^{\frac{\alpha+\beta}{2}-1-\frac{w_{zeq}^{2}}{4\sigma_{p}^{2}}I_{0}} \left(\frac{d\sqrt{-\frac{w_{zeq}^{2}}{2}\ln\left(\sqrt{\frac{\gamma\sigma_{n}^{2}}{R^{2}P_{t}^{2}}} \frac{1}{h_{t}h_{a}A_{0}}\right)}}{\sigma_{p}^{2}}\right) k_{\alpha-\beta} \left(2\sqrt{\alpha\beta h_{a}}\right) dh_{a}^{\frac{\alpha+\beta}{2}-1} \int_{\sqrt{\frac{\omega+\beta}{R^{2}P_{t}^{2}}}}^{\infty} h_{a}^{\frac{\alpha+\beta}{2}-1-\frac{w_{zeq}^{2}}{4\sigma_{p}^{2}}I_{0}} \left(\frac{d\sqrt{-\frac{w_{zeq}^{2}}{2}\ln\left(\sqrt{\frac{w_{zeq}^{2}}{R^{2}P_{t}^{2}}} \frac{1}{h_{t}h_{a}A_{0}}}\right)}}{\sigma_{p}^{2}}\right) dh_{a}^{\frac{\alpha+\beta}{2}-1} \int_{\sqrt{\frac{\omega+\beta}{R^{2}}}}^{\infty} h_{a}^{\frac{\alpha+\beta}{2}-1-\frac{w_{zeq}^{2}}{4\sigma_{p}^{2}}I_{0}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}-1-\frac{w_{zeq}^{2}}{4\sigma_{p}^{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_{a}^{\frac{\alpha+\beta}{2}}} d\mu_{a}^{\frac{\alpha+\beta}{2}} d\mu_$$

Outage probability & Outage capacity

The outage probability: It is the probability that the instantaneous SNR falls below a specific threshold Υ_{th}


The outage probability is calculated by

$$P_{out} = \int_{0}^{Y_{th}} f_{\gamma}(Y) \, dY$$


The capacity with outage: is defined as the maximum rate that can be transmitted over a channel with some outage probability. The basis premise is that a high data rate can be sent over the channel and decode correctly except when the channel is in deep fading **Average capacity with outage:**

$$C_{out} = (1 - P_{out})B\log_2(1 + \Upsilon_{th})$$

 The received power versus the distance
of the UAV from the center of the Gaussian beam footprint with the different transmitted power

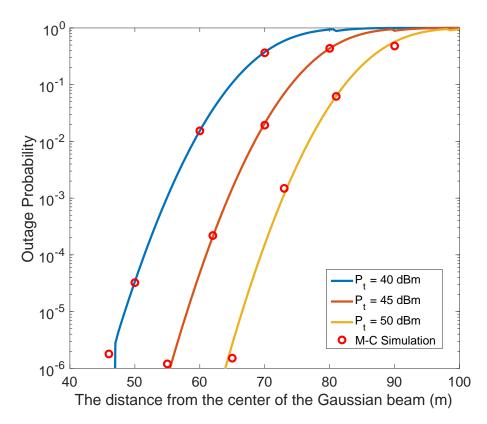
 The signal-to-noise ratio versus the distance from the center of the Gaussian beam footprint with different transmitted power.

HAP

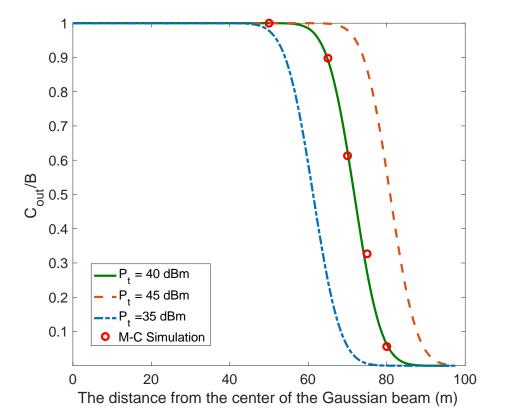
- nm
- The beam waist at HAP $(w_0): 0.2 \text{ mm}$
- The height of HAP (h_{HAP}): 20-25 km
- The transmitted power (P_t): 40 - 50 dBm
- The threshold SNR (Υ_{th}) : 0 dB
- Bit-rate: 1 Gbps

Channel

condition: Verv clear)

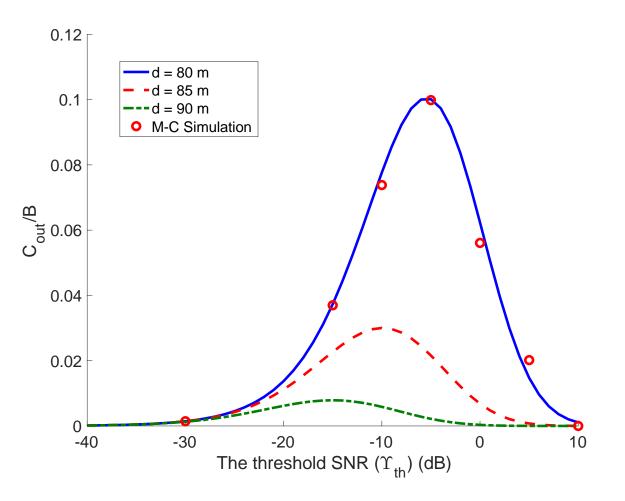

$$\varepsilon = \frac{3.91}{V} \left(\frac{\lambda(nm)}{50}\right)^{\delta}$$

1.6 for V>50 km $\delta = \{1.3\}$ for 6 km < V < 50 km $0.585V^{1/3}$ for 0 km < V < 6 km


(Kruse model)

UAV

- The wavelength (λ): 1550 Visibility (V): 30 km (Weather The height of UAV (h_{UAV}): 50 m
 - The receiver's radius (a): 5 cm
 - The responsivity (R) : 0.9 A/W
 - The effective noise bandwidth (Δf) : 0.5 GHz
 - The absolute temperature: 298 Κ
 - The load resistor (R_1): 1 k Ω
 - The amplifier noise figure (F_n) : 2
 - The standard deviation of UAV due to hovering (σ_p) : 5m


Outage probability versus the distance from the center of the Gaussian beam footprint

Outage capacity/Bandwidth versus the distance from the center of the Gaussian beam footprint

• Outage capacity/Bandwidth versus the threshold SNR with $P_t = 40 \text{ dBm}$

=> We can find the optimum threshold SNR for each location of UAV

Conclusion

- The channel model for HAP-UAV FSO links under impact of atmospheric attenuation, pointing error loss, and atmospheric turbulence is investigated.
- Outage probability versus the distance from the center of the Gaussian beam footprint and Outage capacity/Bandwidth versus the distance from the center of the Gaussian beam footprint are derived. These numerical results are verified by Monte-Carlo simulation.
- Outage capacity/Bandwidth versus the threshold SNR is also derived to find the optimum threshold SNR for each location of UAVs.

Thank you!