Regular CCL seminar

Integrated Satellite-HAP-UAV Network with Hybrid FSO/RF systems

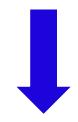
Nguyen Van Thang

Computer Communications Laboratory The University of Aizu, Japan

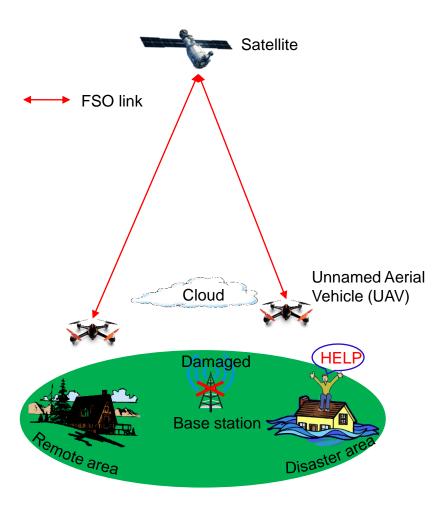
Contents

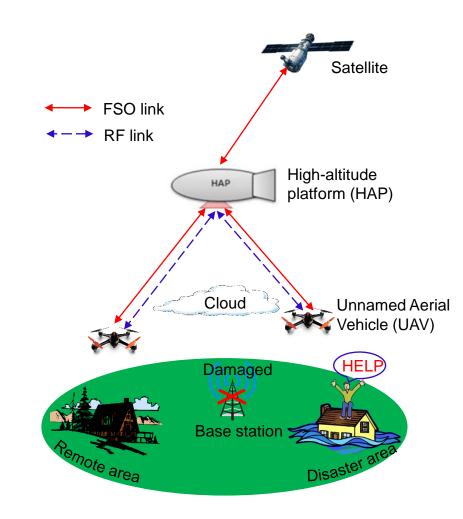
- 1. Context and Motivation
- 2. Literature Survey and Approach
- 3. System & Channel Model
- 4. Adaptive scheme
- 5. Performance analysis
- 6. Numerical results
- 7. Conclusions

1. Context and Motivation


The loss of life and property is huge from disaster [1]

Radio base station vehicle [2]


- Low data rate
- Narrow coverage area
- Difficult to deploy at the inaccessible area


Aims to provide uninterrupted communication in event of tsunamis or earthquakes

 "Natural disaster 2019: Now is the time to not give up" CRED 2019.
 T. Tokuyasu, et. al., "Wireless Access System for Disaster Recovery Providing Safety and Security to Customers," NTT Technical Review, vol. 16, no. 1, 2018.

2. Approach

FSO-based satellite communications

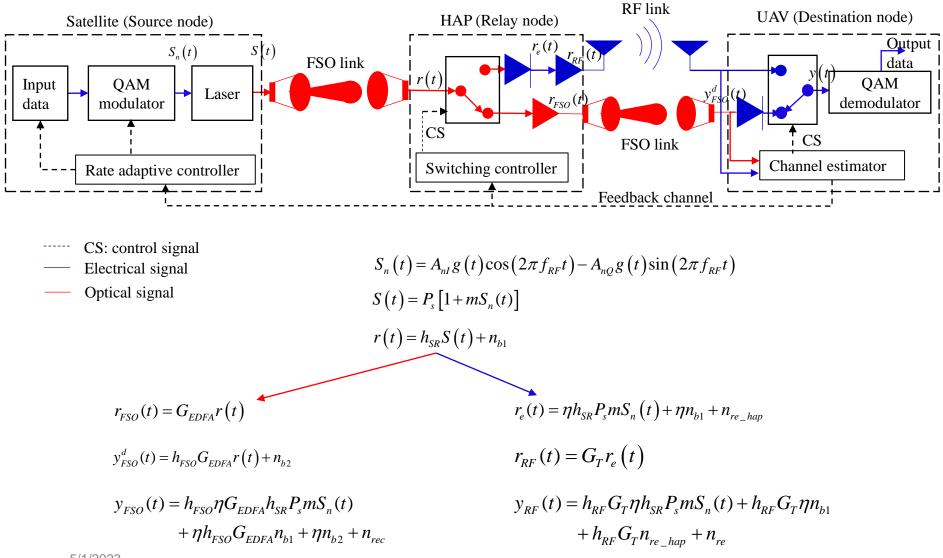
FSO-based dual-hop satellite-HAP-UAV with hybrid FSO/RF systems

2. Literature Survey

Previous

Our works

Ref	Year	Scenarios	FSO link	RF link	Relay	Metrics
[1]	2013	Satellite-GS-GS	GG	Rician	AF	SEP
[2]	2020	Satellite-HAP-GS	GG	Rician	DF	SEP
[3]	2021	GS-HAP-Satellite	GG + PE	Rician	DF	SEP + OP


Focused on the static link (i.e., ground-HAP, ground-satellite)

- Investigate the dynamic link since UAV can move within the beam footprint Applying two mitigation techniques to counteract the
 - environment effects
 - Relaying technique (AF scheme)
 - Hybrid FSO/RF (adaptive transmission rate)
 - Closed-form is derived for all performance metric (average transmission rate, spectrum efficiency, outage probability, and average bit error rate)

[1] Manav R. Bhatnagar, et. al., "Performance analysis of Hybrid satellite-terrestrial FSO cooperative system," IEEE Photonics Technology Letters, 2013.

[2] Swaminathan R., et. al., "Performance Analysis of HAPS-based Relaying for Hybrid FSO/RF Downlink Satellite Communication," VTC2020-Spring. [3] Swaminathan R., et. al., "HAPs-based Relaying for Integrated Space-Air-Ground Networks with Hybrid FSO/RF Communication: A Performance Analysis," IEEE Transactions on Aerospace and Electronic Systems, 2021.

3. System Description

SNR statistics

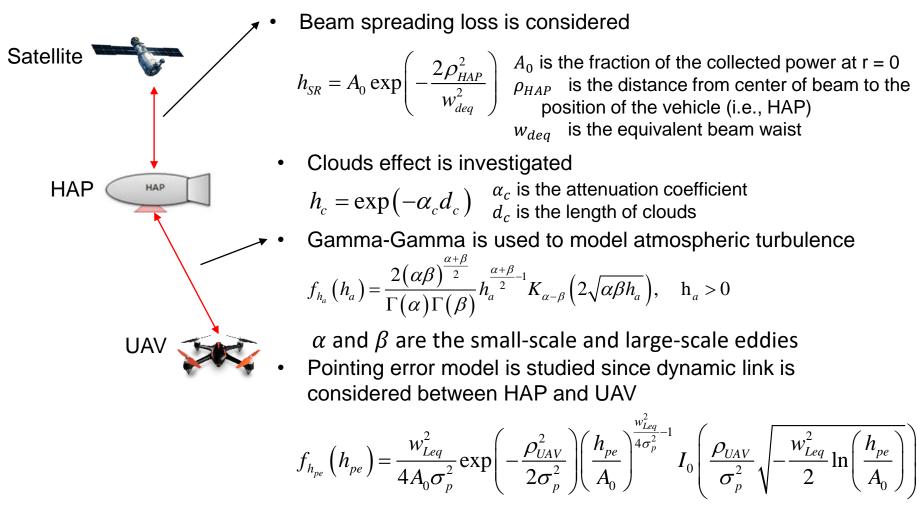
End-to-end instantaneous SNR for FSO-FSO link

$$\gamma_{FSO} = \frac{\left(h_{FSO}\eta G_{EDFA}h_{SR}P_{s}m\right)^{2}}{\left(h_{FSO}\eta G_{EDFA}\sigma_{b1}\right)^{2} + \left(\eta\sigma_{b2}\right)^{2} + \left(\sigma_{rec}\right)^{2}} = \frac{\frac{\left(P_{s}mh_{SR}\right)^{2}}{\sigma_{b1}^{2}}\frac{\left(\eta h_{FSO}\right)^{2}}{\left(\eta\sigma_{b2}\right)^{2} + \left(\sigma_{rec}\right)^{2}}}{\frac{\left(\eta h_{FSO}\right)^{2}}{\left(\eta\sigma_{b2}\right)^{2} + \left(\sigma_{rec}\right)^{2}} + \frac{1}{\left(G_{EDFA}\sigma_{b1}\right)^{2}}} = \frac{\gamma_{1}\gamma_{2,FSO}}{\gamma_{1} + \gamma_{2,FSO} + 1}$$

End-to-end instantaneous SNR for FSO-RF link

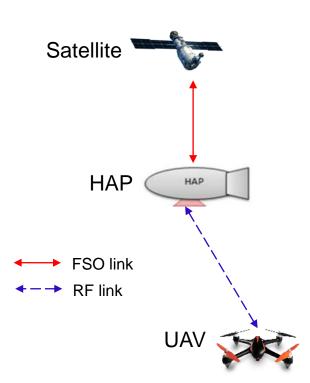
$$\gamma_{RF} = \frac{\left(h_{RF}G_{T}\eta h_{SR}P_{s}m\right)^{2}}{\left(h_{RF}G_{T}\eta \sigma_{b1}\right)^{2} + \left(h_{RF}G_{T}\sigma_{re_hap}\right)^{2} + \left(\sigma_{re}\right)^{2}} = \frac{\frac{\left(P_{s}mh_{SR}\right)^{2}}{\sigma_{b1}^{2}}\frac{\left(\eta h_{RF}G_{T}\sigma_{re_hap}\right)^{2} + \left(\sigma_{re}\right)^{2}}{\left(h_{RF}G_{T}\sigma_{re_hap}\right)^{2} + \left(\sigma_{re}\right)^{2}} = \frac{\gamma_{1}\gamma_{2,RF}}{\gamma_{1} + \gamma_{2,RF} + 1}$$

$$G_{EDFA}^{2} = \frac{1}{P_{s}m(h_{SR})^{2} + (\sigma_{b1})^{2}}$$


$$\gamma_1 = \frac{\left(P_s m h_{SR}\right)^2}{\left(\sigma_{b1}\right)^2}$$

 $G_{T}^{2} = \frac{1}{P_{s}m(h_{SR})^{2} + (\sigma_{b1})^{2}} \qquad \qquad \gamma_{2,FSO} = \frac{(\eta h_{FSO})^{2}}{(\eta \sigma_{b2})^{2} + (\sigma_{rec})^{2}} \qquad \qquad \gamma_{2,RF} = \frac{(\eta h_{RF})^{2}}{(h_{RF}G_{T}\sigma_{re_hap})^{2} + (\sigma_{re})^{2}}$

5/1/2023


3. Channel Model

• FSO link (Gaussian beam is assumed to use)

3. Channel model

RF link

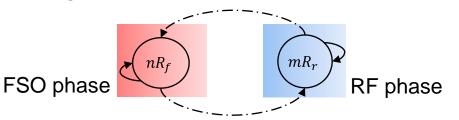
• Rician distribution is used to model the RF channel

$$f_{\gamma_{RF}}(\gamma_{RF}) = \frac{K+1}{\overline{\gamma}_{RF}} \exp\left[-(K+1)\frac{\gamma_{RF}}{\overline{\gamma}_{RF}} - K\right] I_0\left(2\sqrt{K(K+1)\frac{\gamma_{RF}}{\overline{\gamma}_{RF}}}\right)$$

$$\gamma_{RF} = \frac{h_{RD}^2}{\sigma_{D2}^2} \qquad h_{RD} = g_{RF} h_{RF} \qquad L_F = 20 \log_{10} \left(\frac{4\pi d_{RD}}{\lambda_{RF}} \right)$$

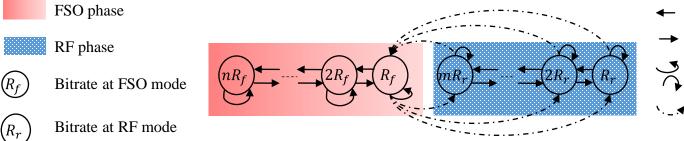
$$g_{RF} = G_T + G_R - L_F - L_c - L_o \qquad \qquad L_c = K_c M_c d_c$$

 g_{RF} is the average power gain h_{RF} is the fading gain L_F is the free space loss L_c is the cloud attenuation


 L_{0} is the other loss

 d_{RD} is the distance between HAP and UAV

- K_c is the specific attenuation within clouds
- M_c is the cloud liquid water content


4. Adaptive scheme

Conventional design

Limitation: frequently switching between FSO and RF link

Adaptive Multi-rate design

- Returning to higher rate mode
 - Going to lower rate mode

Staying in current mode

`-- ✓ Link switching

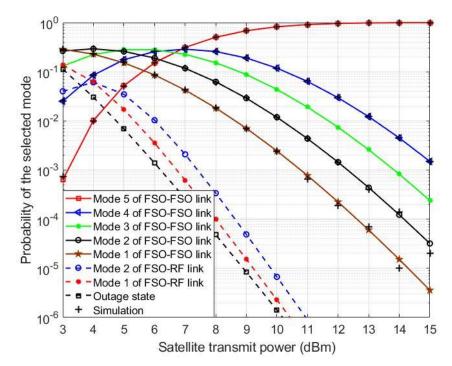
Phase		FSO link				RF link		Outage	
Mode		1	2	3	4	5	6	7	8
Transmission Rate		$8R_f$	$7R_f$	$6R_f$	$5R_f$	$4R_f$	$7R_r$	$6R_r$	0
SNR	FSO	$[\gamma_{f5},\infty)$	$[\gamma_{f4},\gamma_{f5})$	$[\gamma_{f3},\gamma_{f4})$	$[\gamma_{f2},\gamma_{f3})$	$[\gamma_{f2},\gamma_{f1})$		$[0, \gamma_{f1})$)
conditions	RF	No consideration				$[\gamma_{r2},\infty)$	$[\gamma_{r1},\gamma_{r2})$	$[0,\gamma_{r1})$	
Modulation		256-QAM	128-QAM	64-QAM	32-QAM	16-QAM	32-QAM	16-QAM	No transmission

5. Performance analysis

- Selected mode probability
 - FSO FSO link

$$p_{f} = \int_{\gamma_{f(i)}}^{\gamma_{f(i+1)}} f_{\gamma_{f}}(\gamma_{f}) d\gamma_{f} = F_{\gamma_{f}}(\gamma_{f(i+1)}) - F_{\gamma_{f}}(\gamma_{f(i)})$$

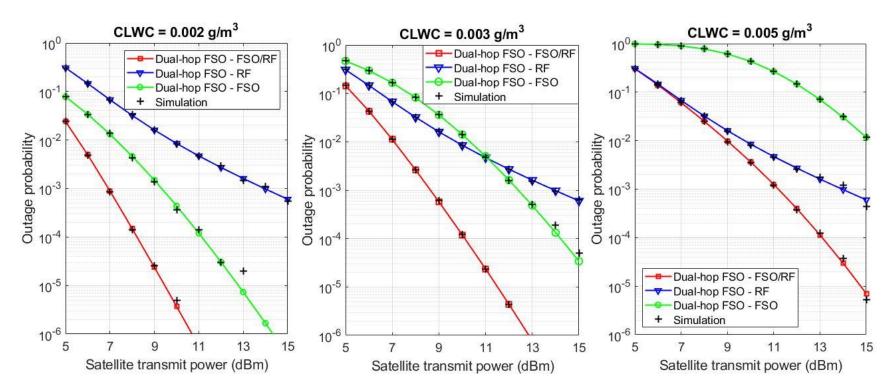
• FSO - RF link

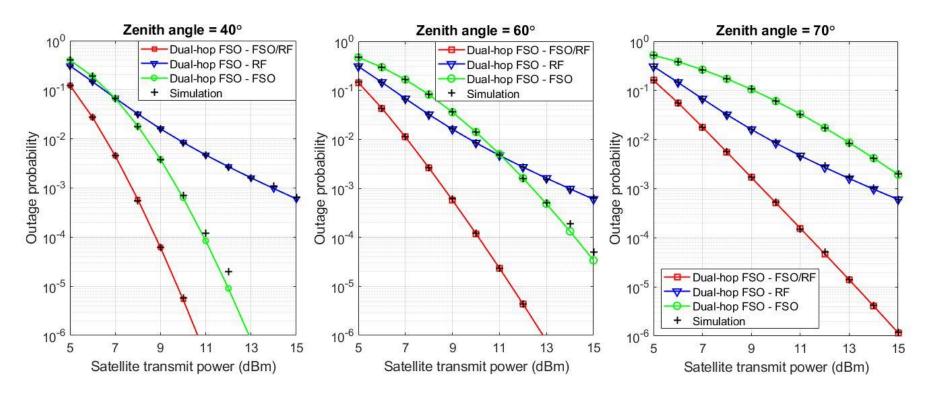

$$p_{r} = \int_{\gamma_{r(i)}}^{\gamma_{r(i+1)}} f_{\gamma_{r}}(\gamma_{r}) d\gamma_{r} = F_{\gamma_{r}}(\gamma_{r(i+1)}) - F_{\gamma_{r}}(\gamma_{r(i)})$$

- Average transmission rate $\overline{R} = \sum_{k=1}^{N} p_k R_k$
- Outage probability

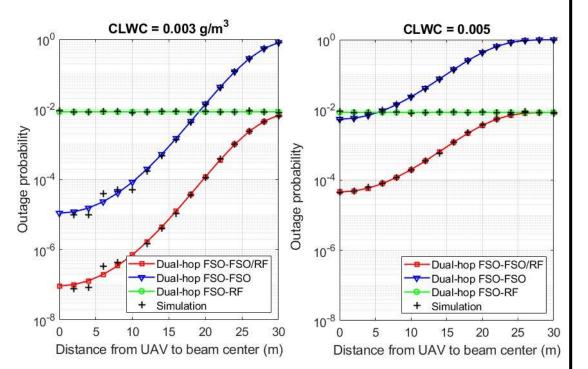
$$P_{out} = \int_{0}^{\gamma_{f(1)}} f_{\gamma_{f}}\left(\gamma_{f}\right) d\gamma_{f} \int_{0}^{\gamma_{r(1)}} f_{\gamma_{r}}\left(\gamma_{r}\right) d\gamma_{r} = P_{out}^{FSO} P_{out}^{RF}$$

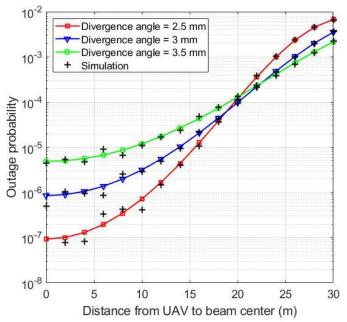
• Average bit error rate

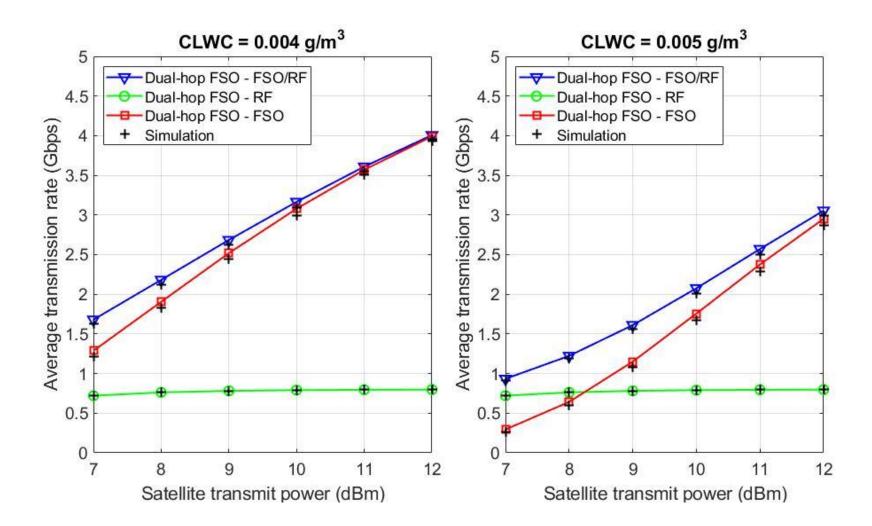

ABER =
$$\frac{\text{Total errorneous bits}}{\text{Total transmitted bits}} = \frac{\sum_{k=1}^{N} R_k p_k \text{BER}_k}{\sum_{k=1}^{N} R_k p_k}$$

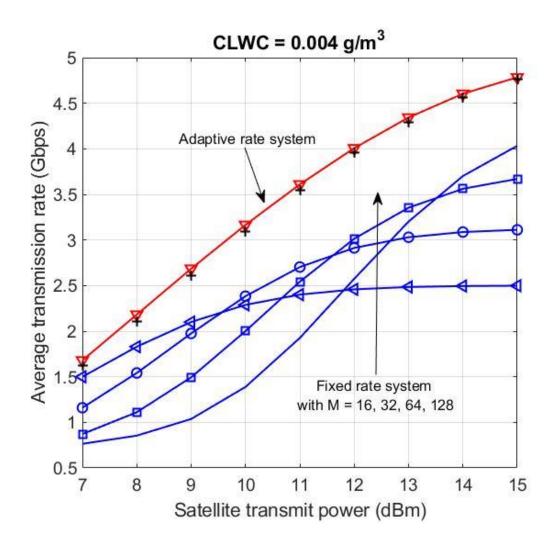

• System parameters

Name	Value				
LEO satellite					
Altitude	530 km				
Divergence angle	50 µm				
Optical wavelength	1550 nm				
RF frequency	26 GHz				
FSO symbol rate	625 Msps				
RF symbol rate	160 Msps				
High-Altitude Platform (HAP)					
Altitude	20 km				
Aperture radius	5 cm				
Photodetector eff.	0.9				
Background light power	250 μW				


Name	Value			
Unmanned Aerial Vehicle (UAV)				
Altitude	100 m			
Hovering jitter variance	0.9 m			
Aperture radius	5 cm			
Background light power	10 µW			
Photodetector eff.	0.9			
The other parameters				
Wind speed	21 m/s			
BER target	10 ⁻⁶			
Rician factor	6 dB			
Number of concentration	250 cm ⁻³			


Zenith angle = 60 degree Divergence angle (HAP) = 2.5 mm Distance from UAV to beam = 20 m


CLWC = 0.003 g/m³ Divergence angle (HAP) = 2.5 mm Distance from UAV to beam = 20 m



Zenith angle = 60 degree Divergence angle (HAP) = 2.5 mm Satellite transmit power = 10 dBm

Dual-hop FSO-FSO/RF system Zenith angle = 60 degree Satellite transmit power = 10 dBm

7. Conclusions

- I studied the adaptive transmission rate for integrated satellite-HAP-UAV with dual-hop FSO/RF system
 - Applying two mitigation technique to counteract the environment effects
 - Relaying technique (AF scheme)
 - Hybrid FSO/RF (Adaptive transmission rate

Thank you for your listening!

Computer Communications Laboratory The University of Aizu, Japan

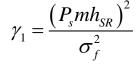
5. Performance analysis

- SNR statistics
 - End-to-end instantaneous SNR for FSO-FSO link $(D 1)^2 1^2$

$$\gamma_{FSO} = \frac{\left(h_{FSO}G_{EDFA}h_{SR}P_{s}m\right)^{2}}{\left(h_{FSO}G_{EDFA}h_{SR}P_{s}m\sigma_{f}\right)^{2} + \left(\sigma_{D1}\right)^{2}} = \frac{\frac{\left(P_{s}mh_{SR}\right)}{\sigma_{f}^{2}} \frac{h_{FSO}^{2}}{\sigma_{D1}^{2}}}{\frac{h_{FSO}^{2}}{\sigma_{D1}^{2}} + \frac{1}{\left(G_{EDFA}\sigma_{f}\right)^{2}}} = \frac{\gamma_{1}\gamma_{2,FSO}}{\gamma_{1} + \gamma_{2,FSO} + 1}$$

End-to-end instantaneous SNR for FSO-RF link

$$\gamma_{RF} = \frac{\left(h_{RF}G_{T}h_{SR}P_{s}m\right)^{2}}{\left(h_{RF}G_{T}h_{SR}P_{s}m\sigma_{r}\right)^{2} + \left(\sigma_{D2}\right)^{2}} = \frac{\frac{\left(P_{s}mh_{SR}\right)^{2}}{\sigma_{f}^{2}}\frac{\eta^{2}h_{RF}^{2}}{\sigma_{D2}^{2}}}{\frac{\eta^{2}h_{RF}^{2}}{\sigma_{D2}^{2}} + \frac{1}{\left(G_{T}\sigma_{r}\right)^{2}}} = \frac{\gamma_{1}\gamma_{2,RF}}{\gamma_{1} + \gamma_{2,RF} + 1}$$


Cumulative distribution function (CDF)

$$\gamma = \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2 + 1} \cong \min(\gamma_1, \gamma_2)$$

• The CDF of $\min(\gamma_1, \gamma_2)$ can be expressed as

$$F_{\gamma}(\gamma) = \Pr\left(\min\left(\gamma_{1}, \gamma_{2}\right) < \gamma\right)$$
$$= F_{\gamma_{1}}(\gamma_{1}) + F_{\gamma_{2}}(\gamma_{2}) - F_{\gamma_{1}}(\gamma_{1})F_{\gamma_{2}}(\gamma_{2})$$

5/1/2023

$$\gamma_{2,FSO} = \frac{h_{FSO}^2}{\sigma_{D1}^2}$$

$$\gamma_{2,RF} = \frac{\eta^2 h_{RF}^2}{\sigma_{D2}^2}$$

 $G_{EDFA} = \frac{1}{\left(P_{s}mh_{sR}\right)^{2} + \sigma_{r}^{2}}$

$$G_T = \frac{1}{\left(P_s m h_{SR}\right)^2 + \sigma_r^2}$$

$$F_{\gamma}(\gamma) = \Pr\left(\min\left(\gamma_{1}, \gamma_{2}\right) < \gamma\right)$$
$$= F_{\gamma_{1}}(\gamma_{1}) + F_{\gamma_{2}}(\gamma_{2}) - F_{\gamma_{1}}(\gamma_{2})$$

$$S_{n}(t) = A_{nl}g(t)\cos(2\pi f_{RF}t) - A_{nQ}g(t)\sin(2\pi f_{RF}t)$$

$$S(t) = P_{s}[1 + mS_{n}(t)]$$

$$r(t) = h_{SR}S(t) + n_{b1}$$

$$r(t) = h_{SR}S(t) + n_{b1}$$

$$r_{e}(t) = \eta h_{SR}P_{s}mS_{n}(t) + \eta n_{b1} + n_{re_hap}$$

$$\downarrow$$

$$r_{e}(t) = \eta h_{SR}P_{s}mS_{n}(t) + \eta n_{b1} + n_{re_hap}$$

$$\downarrow$$

$$y_{FSO}(t) = h_{FSO}G_{EDFA}r(t) + n_{b2}$$

$$r_{RF}(t) = G_{T}r_{e}(t)$$

$$\downarrow$$

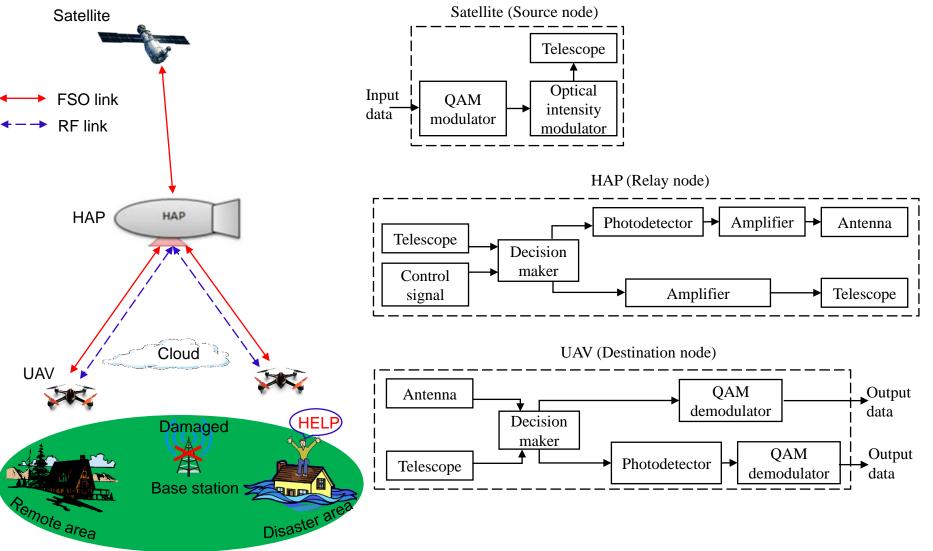
$$y_{FSO}(t) = h_{FSO}G_{EDFA}h_{SR}P_{s}mS_{n}(t)$$

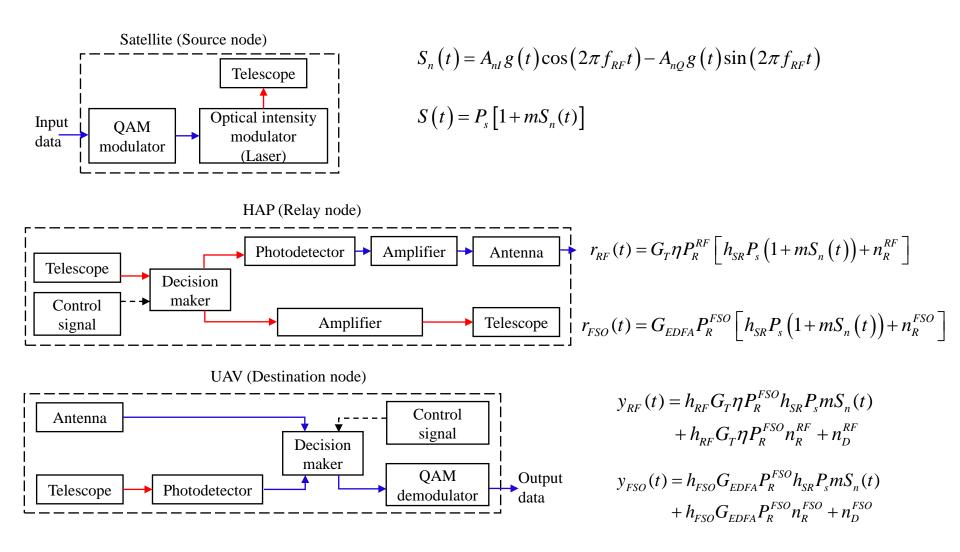
$$y_{RF}(t) = h_{RF}G_{T}\eta h_{SR}P_{s}mS_{n}(t)$$

$$+ \eta h_{FSO}G_{EDFA}n_{b1} + \eta n_{b2} + n_{rec}$$

$$h_{RF}G_{T}\eta n_{b1} + h_{RF}G_{T}n_{re_hap} + n_{re}$$

1. Context and Motivation




Half of the world's population has no internet access [softbank]

We want to create environment of equal access for all

System Model

System Model

