Autoencoders for Probabilistic Constellation Shaping

Thang K. Nguyen

May. 24, 2024

1

Contents

- ❖ Autoencoders
	- ❑ Basic idea
	- ❑ Training
	- ❑ Application
- ❖ My current work
	- ❑ Visible light communication (VLC)
	- ❑ Probabilistic constellation shaping (PCS)
	- ❑ Autoencoder-based PCS design
	- Extension and direction

❑ Basic idea

❑ Training

❑ Application

Basic idea

- Encoder $f(X)$ maps input to a **lower-dimensional representation** (latent space V)
- **Decoder** $g(V)$ decompress representation back to original domain (X')

Basic idea

<u>But</u>

- ❑ Basic idea: Create an architecture with a latent space (**bottleneck layer**), which ensures a **lower-dimensional representation** of the original data
- \Box The latent space keeps the most important attributes of the input data

Why autoencoders?

- Map high-dimensional data to low dimensions for visualization
	- **Compression**
	- Learn abstract features of data

But how do we train an autoencoder?

Training

❑ Minimize reconstruction error:

 $E(|X|, |X'|)$

Original data Reconstructed data

❑ Requirement for an autoencoder:

❑ Backpropagation algorithm

 x_1 x_2 $\left(x_3\right)$ x_3' $\left(\begin{array}{c} x_4 \end{array} \right)$ x_1' x_2 x_2' x_4 v_1) v_2 Output: X' Input: X Latent space: V Decoder Encoder

1. Sensitive enough to input data to reconstruct it

2. Insensitive enough to input data **not** to overfit it

 \Box The latent space keeps the most important attributes of the input data

We can leverage the latent space to perform several interesting tasks

- : History book point
- : Adventure book point
- : Detective book point

• A detective adventure that takes place

during a historical event

• Discuss the historical event with a

detective adventurous narrative style

8

❑ Denoising

This concept can be applied to **an end-to-end communication system**

A communication system over an AWGN channel represented as an autoencoder [1]

- Input \mathbf{s} : The transmitted symbol $\mathbf{s} \in \{1, ..., M\}$
- Output \boldsymbol{p} : Probability vector over all possible symbol
- \hat{s} : Estimated the transmitted symbol
- [1] T. O'Shea and J. Hoydis, "An Introduction to Deep Learning for the Physical Layer," in *IEEE Transactions on Cognitive Communications and Networking*, vol. 3, no. 4, pp. 563-575, Dec. 2017, doi: 10.1109/TCCN.2017.2758370.
- The autoencoder is trained on the set of all possible transmitted symbol s
- Loss function is the categorical cross entropy between $\mathbf{1}_s$ and **p**
- It learns an **intermediate representation x** of **s** (constellation, coding) robust to channel perturbations
- ❑ Visible light communication (VLC)
- ❑ Probabilistic constellation shaping (PCS)
- ❑ Autoencoder-based PCS design
- ❑ Extension and direction

Visible light communication

 \Box It uses the emitted light from the light-emitted diode (LED) as a transmission medium

- ❖ Dual functionality
	- Illumination (primary)
	- Communication (secondary)
- ❖ Immunity to interference from other
	- electromagnetic sources
- ❖ Environment friendly
	- Hospital
	- Airplane

However, the practical deployment of VLC systems faces challenges in **achieving high transmission rates** under peak amplitude constraints of the LEDs

Probabilistic constellation shaping

❑ Probabilistic constellation shaping is an approach to improve the achievable rate by **designing**

Probabilistic constellation shaping

How to design the optimal symbol probability distribution?

LED transmitter

Single input single output (SISO) visible light (VLC) communication system

- **Purpose**: Maximize the achievable rate between the LED transmitter and receiver
- **Variable**: Symbol probability distribution **P** of M-PAM constellation
- \triangleleft Achievable rate $I(X, Y)$:
	- Amount of information that one random variable Y contains about another random variable X
	- \triangleright Measure the reduction in uncertainty about X given the knowledge of Y

Representing the **end-to-end SISO VLC system** as **an autoencoder** is an approach to learning the optimal symbol distribution

Autoencoder-based PCS design

• The autoencoder learns **a sampling mechanism (P)** of transmitted symbols to **maximize the achievable rate** and **minimize the error construction** of transmitted symbol **s** at the receiver

❑ Current results

Autoencoder-based PCS design

❑ Current results

Symbol probability distribution

Extension and direction

❑ Extend the PCS design for multiple transmitters and multiple users scenario

- \triangleright Besides symbol distribution P, the precoding matrix W is another optimization variable
- ➢ The autoencoder network needs to be modified

Extension and direction

❑Extend the PCS design for multiple transmitters and multiple users scenario

• Both transmitter-receiver pairs are implemented as autoencoders

- The two-user interference channel is seen as a combination of **two interfering autoencoders** that try to maximize the sum of achievable rates and reconstruct their respective symbols
- The two autoencoders will be trained to learn both the **sampling mechanism** (P) and the **internal representation** of transmitted symbol with the **precoding matrix** (*W*)

Extension and direction

❑Extend the PCS design for multiple transmitters and multiple user scenarios with channel uncertainty

- Current work: PCS and precoding design with the **perfect knowledge** about the channel state information (CSI) in the transmitter
- Practical scenario: Due to users movements, CSI is **imperfect** due to outdated feedback or erroneous channel estimation

Robust designs needed to be addressed

- Worst-case problem: guarantee **a certain performance** level for all possible channel realizations
- Average problem: guarantees **an average performance** over possible error realizations

Thank you for listening! $Q & A$

Probabilistic constellation shaping

Probabilistic Constellation Shaping

Probabilistic constellation shaping

Let s_1, s_2, \ldots, s_M be *M* bipolar *M*-PAM symbols generated from CCDM and constellation mapping - $a_m(0 < a_m < A)$, p_m are the amplitude and transmission probability of s_m

Single input single output (SISO) visible light (VLC) communication system

• Received electrical signal at user: $y_{\rm U} = h_{\rm U} \gamma \eta (s + I_{\rm DC}) + n_{\rm U}$

 h_U : line-of-sight (LoS) channel gain γ : photodetector's responsivity η : LED's electrical-to-optical conversion factor I_{DC} : DC bias

 $n_{\rm U}{\sim} \mathcal{N}(0, \sigma_{\rm U}^2)$: Gaussian reicever nosie

Removing the DC bias which carries no information

 $\overline{y}_{\text{U}} = h_{\text{U}} \gamma \eta s + n_{\text{U}}$