Free-Space Optical Communication using Modulating Retro-Reflector

Thanh V. Pham

Outline

- Conventional Full Duplex FSO
- ➢ Modulating Retroreflectors (MRRs)
- ➢ Full Duplex MRR-FSO
- Research Proposals

Conventional Full Duplex FSO

➤Two identical transceivers at both ends

PAT Systems

- ➢Avoid or reduce pointing error (e.g., due to platform vibration, the motion of mobile stations)
- ≻3 functions
 - Pointing the transmitter in the direction of the receiver
 - Acquiring the incoming light signal
 - Tracking the position of the remote terminal

Limitations

- Occupy the majority of power consumption, weight, and size of the transceiver
 - Not suitable for limited payload platforms like drones, UAVs

Drone, UAV-based FSO

Solutions: a passive transceiver that doesn't need a PAT system

- A device that can
 - Modulate the incoming light beam
 - Reflect the modulated light beam back to the source

Modulating Retroreflectors (MRRs)

A retroreflector is a device that reflects light back to its source
 A modulating retroreflector = a light modulator + a retroreflector

A retroreflector

A modulating retroreflector

(1): incoming beam (2): retroreflected beam(3): drive signal from the data source (4): light modulator(5): retroreflector

Types

Retroreflectors	Light modulators
Corner cube reflectors (CCRs)	Liquid crystal (LC)
Cat's eye reflectors (CERs)	Micro-electromechanical system (MEMS)
	Multiple quantum well (MQW)
	Ferroelectric piezoelectric lead zirconate titanate (PZT) thin film

Corner Cube Reflectors (CCRs)

> Three mutually perpendicular, intersecting flat surfaces

Cat's Eye Reflectors (CERs)

- > A refracting optical element with a reflective surface
 - The reflective surface is place at the focal surface of the refractive element

CCRs vs. CERs

	Range	Data rate	Size & Complexity
CCRs	Few km (usually less than 5km)	Few Mb/s (e.g., 5 Mb/s [1])	Small & low
CERs	Longer (e.g., up to 7 km [2])	Few tens Mb/s (e.g., 45 Mb/s [2])	Big & high

[1] P. G. Goetz et al., "Modulating retro-reflector lasercom systems for small unmanned vehicles," *IEEE J. Sel. Areas Commun.*, vol. 30, no. 5, pp. 986–992, Jun. 2012.

[2] W. S. Rabinovich, et al., "45 Mbps cat's eye modulating retro-reflectors," *Optical Engineering*, vol. 46, no. 10, 104001, 2007.

Full Duplex MRR-FSO

- ➤ Uplink: conventional FSO link
- ➢ Downlink: double-pass FSO link
 - Incoming beam (i.e., forward channel) from the transceiver + reflected beam (i.e., backward channel) from the MRR
 - Modeled as the product of two (possibly correlated) random variables

Research on MRR-FSO

	References	Notes
	 A. M. Scott, K. D. Ridley, "Calculations of bit error rates for retroreflective laser communications systems in the presence of atmospheric turbulence," <i>Proc.</i> SPIE, vol. 5614, pp. 31-42, Dec. 2004. 	Bit-error rate, outage probability, and average capacityForward and backward channels are
Theory	2. X. Li et al. "Probability density function of turbulence fading in MRR free space optical link and its applications in MRR free space optical communications," <i>IET Communications</i> , vol. 11, no. 16, pp. 2476-2481, Nov. 2017.	independent gamma-gamma (G-G) RVs.
	3. G.Yang et al. "Performance analysis of full duplex modulating retro-reflector free-space optical communications over single and double gamma-gamma fading channels," <i>IEEE Trans. Commun.</i> , vol. 66, no. 8, pp. 3597-3609, Mar. 2018.	 Forward and backward channels are correlated G-G RVs. Approximately model as an α – μ RV
Experiment	 P. G. Goetz et al., "Multiple quantum well based modulating retroreflectors for inter- and intra-spacecraft communication," <i>Proc. SPIE</i>, vol. 6308, p. 63080A, Aug. 2006. P. G. Goetz et al., "Modulating retro-reflector lasercom systems at the naval research laboratory," in <i>Proc. IEEE Military Commun. Conf.</i>, pp. 1601–1606, 2010 P. G. Goetz et al., "Modulating retro-reflector lasercom systems for small unmanned vehicles," <i>IEEE J. Sel. Areas Commun.</i>, vol. 30, no. 5, pp. 986–992, Jun. 2012. B. Neuner, III, and B. M. Pascoguin, "Wavelength optimization via retroreflection for underwater free-space optical communication," <i>Proc. SPIE</i>, vol. 9467, p. 946724, May 2015 	Illustrate the feasibility of MRR-FSO systems

Research Proposals

Statistical model of the double-pass channel

 $\alpha - \mu$ approximation

• Parameters of the approximating $\alpha - \mu$ RV are obtained numerically \rightarrow does not give much insight into the effect of turbulence and channel correlation on the system performance

Alternative mathematical models

- Approximated by a G-G RV whose parameters can be obtained in closed-form
- Exact statistical distribution (already known for the product of two independent G-G RVs)

Effect of pointing error

- Almost inevitable due to the mobile's hovering and vibration.
- once pointing error happens in the forward link, the backward one should also be suffered from it

THANKYOU FORYOUR LISTENING