End-to-end Performance Optimization for Mixed FSO/sub-THz-aided Vertical Networks: A ML Aproach

NGUYEN Van Tinh

Computer Communication Lab., The University of Aizu, Japan

Nov. 8th, 2023

イロト イヨト イヨト

I. Network Scenario

II. Critical Issues

III. Research Goal and Tentative Schedule

Tinh I	Nguyen (CCL, L	JoA)

2

< □ > < □ > < □ > < □ > < □ >

Current 5G Network and Its Limitations

5G is mostly based on terrestrial infrastructure using radio frequency (RF) transmission

Main limitations:

- 1. Data-rate Limitation: 5G can support Gbps data rate or lower \rightarrow need higher data rates for future applications
- 2. **Coverage Limitation:** limit the support to rural/remote areas, cannot guarantee global coverage
- 3. Flexibility Limitation: limit to provide flexible deployment for emergency communications and temporary events

Figure: Terrestrial cellular mobile networks using RF transmission

Research Motivations

1. Data-rate Limitation:

Free-space optics (FSO) (187-400 THz) and sub-THz (90-300 GHz) technologies can offer much larger bandwidth than the current 5G mmWave (24-100 GHz)

 \implies Higher speed connections (\sim hundreds of Gbps or even Tbps)

2. Coverage Limitation:

Low-earth orbit (LEO) satellites (160-1500 km) forming constellation networks can be deployed to provide the Internet from space (e.g., Starlink-SpaceX, Project Kuiper-Amazon,...)

 \implies Global coverage and lower latency than other types of satellite

3. Flexibility Limitation:

The use of unmanned aerial vehicles (UAVs) has recently emerged as an efficient solution for a wide range of applications, e.g., delivery services, search and rescue in emergency operations, smart agriculture, and military missions

 \implies Low-cost and flexible deployment

Considered Network Scenario

We consider an end-to-end network scenario that includes two main transmission links

- 1. Backhaul Link: from LEO satellite to UAV
 - Long distance (hundreds of km)
 - High speed needed
 - ⇒ FSO transmission is considered
- 2. Access Link: from UAV to ground users (GU)
 - Short distance (hundreds of meters)
 - Dynamic network (the mobility of GUs)
 - \implies Sub-THz transmission is considered

< □ > < 同 > < 回 > < 回 >

I. Network Scenario

II. Critical Issues

III. Research Goal and Tentative Schedule

T 1 1	- N I		10	<u></u>		A \
i inn	1 1 1	guyen	10	CL,	υo	А)
		0.7.				

2

< □ > < □ > < □ > < □ > < □ >

Critical Issues (1)

Backhaul link:

- 1. Cloud attenuation: the liquid water particles in clouds cause the scattering phenomenon
- 2. Atmospheric turbulence: air pockets with different refractive indexes cause the scintillation effect
- 3. **Pointing error:** misalignment between the center of the satellite beam footprint and that of the receiver detector

Unstable channel \rightarrow Limited capacity of the backhaul link

Tinh Nguyen (CCL, UoA)

Research Plan Seminar

Nov. 8th, 2023

7/15

Critical Issues (2)

Access link:

Dynamic network: the GUs move over time \rightarrow time-varying network topology

How to optimize the end-to-end performance/keep the quality of service/experience (QoS/QoE) under the constraints of backhaul link and dynamic network of access link?

 \implies Adopt mitigation techniques for backhaul link and find the optimal UAV's trajectory for access link

(日) (四) (日) (日) (日)

I. Network Scenario

II. Critical Issues

III. Research Goal and Tentative Schedule

T 1 1	- N I		10	<u></u>		A \
i inn	1 1 1	guyen	10	CL,	υo	А)
		0.7.				

2

9/15

メロト メタト メヨト メヨト

Literature Review

Survey of major studies related to UAV trajectory for access links

Reference	Summary
[1] – 2021	A novel mechanism for link optimization for a LEO satellite- UAV-GU network. <u>MmWave</u> is employed for the backhaul link.
[2] – 2021	A trajectory algorithm and collision avoidance schemes for multiple UAVs for access link. FSO transmission is adopted. \rightarrow No backhaul-link consideration. BS positions are fixed
[3] – 2023	Algorithms for UAV trajectory for UAV-to-BS (access) link. Random position of BSs and THz transmission are considered. → No backhaul-link consideration

The UAV-trajectory algorithm considering FSO-based satellite-to-UAV backhaul link is not studied yet.

 A. H. Arani, P. Hu and Y. Zhu, "Faimess-Aware Link Optimization for Space-Terrestrial Integrated Networks: A Reinforcement Learning Framework," in IEEE Access, vol. 9, pp. 77624-77636, 2021.
 Song, M. Choi, D. -E. Ko and J. -M. Chung, "Multi-UAV Trajectory Optimization Considering Collisions in FSO Communication Networks," in IEEE Journal on Selected Areas in Communications, vol. 39, no. 11, pp. 3378-3394, Nov. 2021.
 M. T. Dabiri, M. Hasna, N. Zorbaand T. Khattab, "Optimal Trajectory and Positioning of UAVs for Small Cell HetNets: Geometrical Analysis and Deep Reinforcement Learning Approach," IEEE Open Journal of the Communication Society, 2023.

(日) (四) (日) (日) (日)

Goals of the Study (1)

<u>GOAL</u>: to optimize the end-to-end throughput performance and keep the QoS (outage probability/BER) under the constraints of the backhaul link and dynamic network of the access link

- 1. Backhaul link:
 - We design an adaptive power/rate scheme to keep the QoS of the backhaul link (our previous work)
- 2. Access link:
 - Optimization problem for UAV trajectory is usually NP-hard (non-convex, non-linear combination problem) → Apply deep reinforcement learning (DRL)
 - UAV has limited energy and weak computing power → Employ digital twin (DT) technology to provide a virtual training environment
 - We also employ a ML-based echo state network (ESN) to predict the GU in advance to support the optimization process of the UAV trajectory design

イロト 不得 トイヨト イヨト

Goals of the Study (2)

2. Access link:

Figure: The access-link system model

3. We investigate the end-to-end performance of the system

Tinh Nguyen (CCL, UoA)

Nov. 8th. 2023

< □ > < □ > < □ > < □ > < □ >

12/15

Research Summary

Tinh Nguyen (CCL, UoA)

Research Plan Seminar

Nov. 8th, 2023

э

13/15

Research Schedule

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</p>
Nov. 8th, 2023

Thank you for your attention!

Tinh Nguyen (CCL, UoA)

Research Plan Seminar

Nov. 8th, 2023

15 / 15

イロト イヨト イヨト