Research Progress: End-to-end Performance Optimization for Mixed FSO/RF-aided Vertical Networks: A DRL Approach

Tinh Nguyen

Computer Communications Lab., The University of Aizu

Outline

\circ Introduction

- Aerospace Integrated Network
- Critical Issues
- Motivations
- Literature Review and Goals of the Study

• System Description

- System Model
- Problem Formulation
- Deep Reinforcement Learning for UAV Deployment

Introduction

Aerospace Integrated Network

- Recently, *free-space optics (FSO)* is envisioned as a promising candidate for backhaul networks thanks to its *extremely high-speed connection*
- Aerospace integrated network, incorporating satellites, HAP, and UAV, can guarantee seamless and ubiquitous access services, especially in remote, hotspot, or emergency areas.

→ The aerospace integrated network jointly comprised of the UAV access and LEO satellite/HAP-based FSO backhaul is a promising framework for future 6G networks.

Critical Issues

- Backhaul link:
 - *Cloud attenuation:* the liquid water particles in clouds cause the scattering phenomenon
 - *Atmospheric turbulence:* air pockets with different refractive indexes cause the scintillation effect
 - *Pointing error:* misalignment between the center of satellite beam footprint and that of the UAV detector

 \rightarrow Unstable channel \rightarrow Limited capacity of the backhaul link

- Access link:
 - *Dynamic network:* the GUs move over time
 - → *Time-varying network topology*

Motivations

- Aerospace integrated FSO backhaul links:
 - FSO channel conditions, e.g., atmospheric turbulence, cloud, and pointing error conditions, have a considerable impact on the link capacity
 - Limited backhaul capacity can be a bottleneck, which directly affects the end-to-end performance

 \rightarrow It is necessary to investigate the FSO channel conditions on the end-to-end performance

- Dynamic environment:
 - The movement of ground users, time-varying conditions of backhaul link

 \rightarrow Flying platforms, e.g., UAVs, can adapt the spatial positions to maintain stable connections with LoS connectivity

Literature Review

• Some major papers that consider UAV placement for end-to-end network

Ref.	Year	Journal	Title
1	2021	Trans. Veh. Technol.	Latency Aware 3D Placement and User Association in Drone-Assisted Heterogeneous Networks With FSO-Based Backhaul
2	2023	Trans. Wireless Commun.	Backhaul-Aware Drone Base Station Placement and Resource Management for FSO-Based Drone-Assisted Mobile Networks
3	2022	Trans. Veh. Technol.	Spectral-Efficient Network Design for High-Altitude Platform Station Networks with Mixed RF/FSO Systems
4	2023	Photon. J.	Outage Probability Analysis and Joint Optimization for UAV-aided FSO/RF Systems with Nonlinear Power Amplifiers
5	2023	Internet Things J.	Cooperative UAV Trajectory Design for Disaster Area Emergency Communications: A Multi-Agent PPO Method

Current studies:

- mainly focus on the access network and usually **ignore the impacts of FSO channel** conditions
- mainly address the **UAV placement problem with static networks**, i.e., when there are changes in the environment, those algorithms need to start from the beginning

May 08, 2024

Lab. Seminar

Goals of the Study

• <u>GOAL:</u> find the **optimal placement of the UAV** to **optimize the end-to-end throughput performance** under the constraints of (1) the unstable channel of the backhaul links and (2) the dynamic network of the access links

1. Backhaul link:

• We thoroughly consider the FSO impairment factors, including atmospheric turbulence, pointing error, and cloud attenuation

2. Access link:

• We implement Deep Reinforcement Learning (DRL) as an effective approach to handle the real-time UAV placement with dynamic network

System Description

System Model (1)

Application: to provide the internet connection to rural/remote areas or temporary events where ground base stations are unavailable

The end-to-end network scenario includes 2 main transmission links:

- 1. Backhaul link: from HAP to UAV
- → FSO transmission is used for highspeed connection
- 2. Access link: from UAV to GU and HAP to GU
- \rightarrow RF transmission is used

System Model (2)

We consider an area of $600 \times 600 \ m^2$

• Users

- The users are normally distributed with the standard deviation of 100m. The mean is randomly chosen in the whole area
- A part of users follow the Gauss-Markov mobility model, while others stay unchanged
- Cloud model
 - We consider moving cloud with heterogeneous clwc*
 - The shadowing area is modeled as a 6x6 grid that demonstrates different clwc
 - The cloud moves to the west with a velocity of 4 m/s

*: clwc (cloud liquid water content) - a measure of the total liquid water contained in a cloud in a vertical column of atmosphere (the less, the better)

Problem Formulation

DRL for UAV Deployment

DRL Algorithm

• DRL Algorithm:

- DRL: a process in which an agent learns to make decisions through trial and error
- The problem is often modeled mathematically as a Markov decision process (MDP), where the agent interacts with the environment based on a particular policy
- At time step t, the agent *chooses an action* a_t from the action space. It then *receives a reward/punishment* r_t from the environment and then *updates its current state* s_t
- The algorithm aims to *maximize the cumulative received rewards*

Markov Decision Process (MDP)

- Considered state, action, and reward:
 - State s_t : the coordinates of UAV, users, and clwc grid
 - Action a_t : move (1)-north, (2)-west, (3)-south, (4)-east, (5)-remain stationary

• **Reward**
$$r_t$$
: $r_t = \alpha \sqrt{R_t \times R_t^{FSO}}$

- *α*: normalization factor
- $R_t = \sum_{\{u1 \in U_1\}} R_{u_1}(t)$: total users' rate provided by the UAV at time step t
- R_t^{FSO} : backhaul capacity at time step t

Lab. Seminar

System Parameters

• RL Framework: Deep Q-Learning

Parameter	Value
RF transmit power	20 dBm
FSO transmit power	17 dBm
RF bandwidth	200 MHz
FSO bandwidth	200 MHz
Number of GUs	75
UAV's covered radius	100 m
Learning rate	0.001
Discount factor	0.99
Decaying epsilon-greedy parameters $(\epsilon_{\max}, \epsilon_{\min}, \Delta \epsilon)$	0.99, 0.01, 0.01
Number of episodes	2000
Number of iterations/timestep per episode	900

Episode Reward

- As we can see, the episode reward gradually increases and converges after about 300 episodes
- This means that the agent forms a better movement policy over time

Fig. Episode reward vs. number of episode

Path of Movement

- The figure demonstrates the movement of the trained agent in a test environment
 - The test environment was set up randomly
 - The agent was not trained during the test

→ We can see that the UAV tends to move to the area that gathers many users and has low clwc

Fig. Behavior of the trained agent in the test environment

Total Users' Rate

Fig. Total users' rate over time (1 episode)

Fig. Average total user's rate over 50 test episodes

- As can be seen, our trained model provides the highest performance in terms of total users' rate over time
- This means that the agent can find good positions that have low clwc and there are many users around

May 08, 2024

Lab. Seminar

Thank you for your listening!