Research Progress: An FSO-based Drone Assisted Access Network

Tinh Nguyen

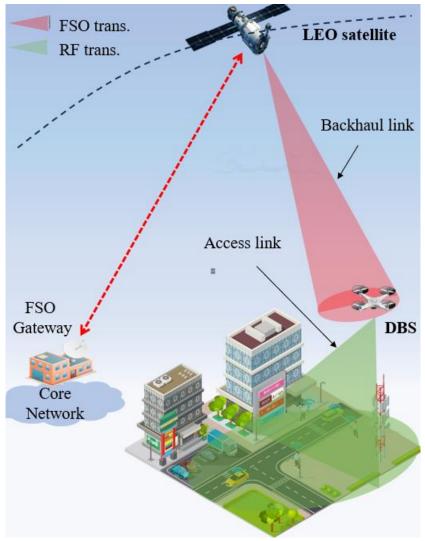
Computer Communications Lab., The University of Aizu

Outline

\circ Introduction

- Considered End-to-End Network Scenario
- Literature Review
- Motivation

An FSO-Based Drone Assisted Mobile Access Network


- System Model and Problem Formulation
- The Proposed Heuristic Algorithm
- Problem/Comment

Introduction

Considered End-to-End Network Scenario

- Recently, *free-space optics (FSO)* is envisioned as a promising candidate for backhaul networks thanks to its *extremely high-speed connection*
- In addition, using *drone base station* (*DBS*) can significantly improve the performance of current cellular networks thanks to its ability to *establish Line of Sight (LoS) communication links* with ground users

→ End-to-end networks, including FSObased backhaul links and DBS-based access links, are expected to be a key network architecture for beyond 5G/6G wireless networks

Literature Review (1)

• Some major papers that consider both access and FSO-based backhaul links

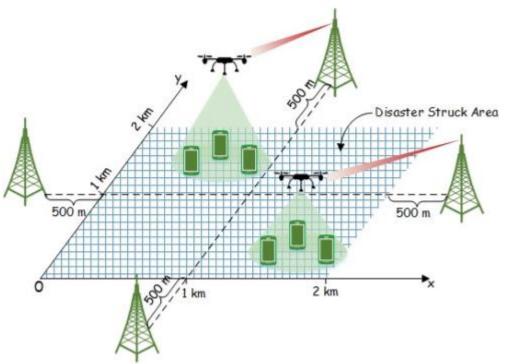
Ref.	Year	Journal	Title
1	2020	Trans. Netw. Sci. Eng.	An FSO-Based Drone Assisted Mobile Access Network for Emergency Communications
2	2021	Trans. Veh. Technol.	Latency Aware 3D Placement and User Association in Drone- Assisted Heterogeneous Networks With FSO-Based Backhaul
3	2023	Trans. Netw. Sci. Eng.	Backhaul-Aware Drone Base Station Placement and Resource Management for FSO-Based Drone-Assisted Mobile Networks
4	2023	Trans. Veh. Technol.	Trajectory Design and Bandwidth Allocation Considering Power- Consumption Outage for UAV Communication: A Machine Learning Approach
5	2023	Internet Things J.	Cooperative UAV Trajectory Design for Disaster Area Emergency Communications: A Multi-Agent PPO Method
6	2023	Photon. J.	Outage Probability Analysis and Joint Optimization for UAV-aided FSO/RF Systems with Nonlinear Power Amplifiers

Literature Review (2)

• Purpose: optimize the access network performance under the constraint of the backhaul link

• Objective function:

- (1) Max num. users [1],[3]
- (2) Min outage prob. [6]
- (3) Max users' data rate [4-5]
- (4) Min latency [2]
- Approach:
 - Conventional optimization techniques [1-3],[6]
 - Deep reinforcement learning (DRL) approach [4-5]

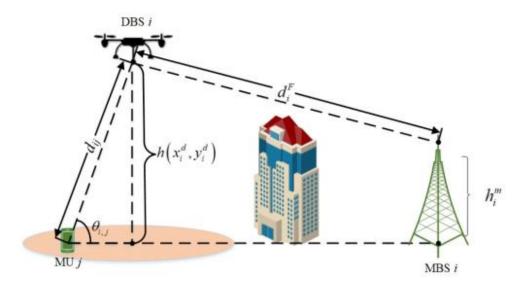

Motivations

- The current works mainly focus on the access network
 - The impacts of atmospheric turbulence and clouds are usually ignored
- Motivations
 - My goal:
 - 1. Focus on the backhaul links
 - 2. Investigate the impact of the channel conditions of the backhaul links on the access links and end-to-end performance
 - I need more time to get familiar with optimization techniques/DRL approach
- → As the first step, I would like to adopt a simple access network model to investigate the impact of the backhaul link.
- → The ref. [1] that utilizes a simple heuristic algorithm is a potential approach to start with

An FSO-Based Drone Assisted Mobile Access Network [1]

System Model

- A disaster area is divided into 4 locations of the same size, with a total of J mobile users (MUs)
- A set of 4 Drone Base Stations (DBS) are deployed to deliver traffic. Each DBS supports 1 location and is connected to a nearby macro base station (GBS)
- The UAVs are independent and do not have interconnection with each other
- Each MU is only associated with 1 UAV
- FSO transmission is used for the backhaul links, while RF is used for the access links

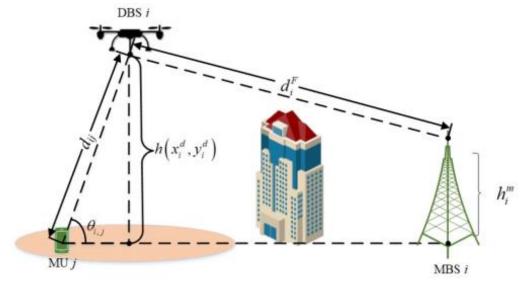


Backhaul Link: FSO Data Rate

• The data rate of the FSO link between DBS i and its GBS is modelled as

$$R_{i} = \frac{P_{t}}{E_{p}N_{b}} \left(\frac{r_{s}}{\left(\theta_{g}d_{i}^{F}2\right)^{2}}\right) \eta_{t}\eta_{r}10^{-\exp\sigma d_{i}^{F}}$$

• Where N_b is the sensitivity of the receiver, E_b is the Plank's constant, c is the speed of light, r_s and θ_g are the radius and divergence angle of the FSO beam, respectively. In addition, η_t and η_r are the coefficient to convert electrical to optical energy and vise versa; d_i^F is the distance between DBS *i* and its GBS and σ is atmospheric attenuation coefficient.



Access Network: Pathloss Model

The channel between an MU and their associated DBS is modeled as a probabilistic Line-of-Sight (LoS) channel. The average pathloss between the DBS *i* and MU *j* is expressed as

$$\overline{\eta}_{ij} = \rho_{ij}\eta_{ij}^{LoS} + (1-\rho_{ij})\eta_{ij}^{NLoS}$$

• Where ρ_{ij} is the probability of having LoS channel, η_{ij}^{LoS} and η_{ij}^{NLoS} are the pathloss in LoS and NLoS, respectively. These parameters are directly related to the distance between the DBS and MU, i.e., d_{ij}

Problem Formulation

• The optimization problem (\mathcal{P}) is formulated as

Maximize the total number of users.Maximize the total number of users.Maximize the total number of users.Note:
$$a_{ij} \in \{0,1\}$$
 to indicate if DBS i is
associated with MU jS.t.: $C1: \sum_{i \in I} a_{ij} \leq 1, \forall j \in J$,Each MU is only associated with 1 DBSC2: $f^{min}(x_i^d, y_i^d) \leq h(x_i^d, y_i^d) \leq f^{max}(x_i^d, y_i^d)$,Altitude constraint of the DBSC2: $f^{min}(x_i^d, y_i^d) \leq h(x_i^d, y_i^d) \leq f^{max}(x_i^d, y_i^d)$,Altitude constraint of the DBSC2: $f^{min}(x_i^d, y_i^d) \leq h(x_i^d, y_i^d) \leq f^{max}(x_i^d, y_i^d)$,Altitude constraint of the DBSC2: $f^{min}(x_i^d, y_i^d) \leq h(x_i^d, y_i^d) \leq f^{max}(x_i^d, y_i^d)$,Altitude constraint of the DBSC3: $a_{ij}(\eta_{ij} - \eta_{ij}^{th}) \geq 0, \forall i \in I, \forall i \in I,$ The pathloss η_{ij}^{th} must be satisfied if the MU j is
associated with DBS i (i.e., $a_{ij} = 1$)C4: $a_{ij}(r_{ij} - r_j^{th}) \geq 0, \forall i \in I, \forall j \in J,$ The total rate of the access link should not be larger
than the FSO rate offered by the backhaul linkC6: $\sum_{j \in J} a_{ij}b_{ij} \leq B_i, \forall i \in I,$ The total bandwidth allocated to MUs should be
within the available bandwidth

The Proposed Heuristic Algorithm

- To efficiently solve *P*, the authors propose a heuristic algorithm, i.e., QoS awaRe dronE base Station plaCement and mobile User association strategy (RESCUE)
- **IDEA:** decompose \mathcal{P} into three sub-problems, i.e.,

 \mathcal{P}_1 : Initial 3D DBS Placement: \rightarrow find the optimal initial position of the DBS

 \mathcal{P}_2 : Bandwidth Allocation and MU Association \rightarrow associate the MUs to the DBS and allocate bandwidth to them

 \mathcal{P}_3 : Altitude Adjustment \rightarrow find a better altitude of the DBS to support more user

• We first solve the sub-problem (\mathcal{P}_1) , then iteratively solve (\mathcal{P}_2) and (\mathcal{P}_3) to achieve a near-optimal solution of \mathcal{P}

\mathcal{P}_1 Initial 3D DBS Placement (1)

- Optimal Altitude of the DBS (h_i^*)
 - Let r: the coverage radius of the DBS so that the pathloss of the MU in the covered area is no larger than the pathloss threshold η^{th} .
 - With the provided pathloss model, there exists only one optimal altitude of the DBS that maximize *r*

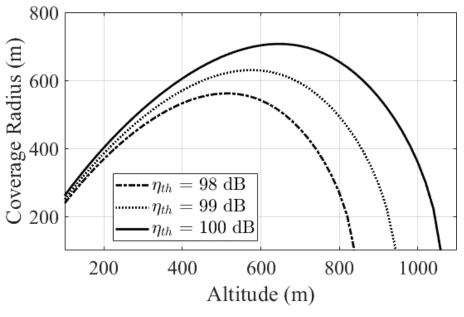


Fig. Altitude versus coverage radius of the DBS

Lab. Seminar

\mathcal{P}_1 Initial 3D DBS Placement (2)

- Optimal 2D coordinate of the DBS ($\langle x_i^d, y_i^d \rangle$)
 - Step 1: Select DBS i
 - *Step 2:* Select location *n* which has no DBS
 - Step 3: Place DBS *i* at the *center* of the location *n* and at the optimal altitude *h*^{*}_i that maximizes the coverage area. Then calculate the number of covered MUs, denoted as *K_n*
 - Step 4: Iteratively select other locations and calculate K_n based on step 2. The optimal location of the DBS *i* is the location n^* that incurs *the largest* value of $K_n \rightarrow$ DBS *i* will be placed over the *center* of location n^*
 - Step 5: Select another DBS and go to step 1

\mathcal{P}_2 Bandwidth Allocation and MU Association

- After having determined the 3-D location of DBS *i*, each MU covered by DBS *i* should be allocated sufficient bandwidth
 - Each user has a predetermined data rate requirement. The required bandwidth is calculated based on the required data rate and current pathloss
- Since the available bandwidth is limited → to maximize the number of users, the user with the *least bandwidth requirement will be prioritized* (*Greedy algorithm*). Specifically,

Step 1: Sort all covered MUs in ascending order according to their bandwidth requirement

Step 2: Allocate the required bandwidth to the MUs in the order until one of the following conditions is met

- There are no MUs left
- There is not enough bandwidth to meet the requirement of the next user
- The total data rate exceeds the capacity of the backhaul link

\mathcal{P}_3 Altitude Adjustment

- If the DBS *i* is unable to support all cover MUs, the altitude will be adjusted to support more users. In particular,
 - Step 1: Denote h_i^* as the altitude obtained from \mathcal{P}_1 , and δ as the step size of adjusting the altitude
 - Step 2: Let $h_i^- = h_i^* \delta$, and $h_i^+ = h_i^* + \delta$. Calculate the number of users associated to DBS *i* by re-excecuting \mathcal{P}_2 based on h_i^- and h_i^+
 - Step 3: Choose the altitude among h_i^* , h_i^- and h_i^+ that provides the highest number of supported users and update h_i^* of the DBS
 - Step 4: Recursively execute step 2 and 3 until no more users can be supported

Problems/Comments

 Each user has a requested data rate, the required bandwidth is calculated from the required rate and current pathloss

 \rightarrow Not practical in real systems

• In \mathcal{P}_1 , a DBS needs to investigate each remaining location once before it can choose the best location

 \rightarrow Not reasonable because, in the end, each DBS must be at the center of each location

• The DBSs are placed at the center of each location, and only the altitude is adjusted

 \rightarrow Not 3D placement as in the problem formulation

Thank you for your listening!