Fall 2015-Performance Evaluation of Network Systems Course (CNA04)

TCP and Modeling TCP Performance: A Review & Survey

Vuong Viet Mai Computer Communications Lab. 1:30pm-3:00pm November 24, 2015

Outline

- 1. Introduction
 - TCP
 - Performance Study of TCP/IP
- 2. TCP Congestion Control Review
 - Congestion indications & reactions
 - TCP variants classification
- 3. TCP Modeling
 - Renewal Theory Models
 - Fixed-point Methods
 - Control Theoretic Models
- 4. Summary & Recommended Refs

Introduction: TCP

- Transmission Control Protocol (TCP) is the predominant transport protocol used by IP technology to support popular Internet services
- TCP applications & services
 - Most popular Internet applications use TCP
 - E-mail, WWW, file transfer, remote login, etc.

Introduction: TCP

- Motivation for Performance Study of TCP
 - Originally, TCP worked well in wired network
 - Nowadays, in heterogeneous networks: TCP algorithms & parameters that are suitable for one environment are not always suitable for other environments
 - Must acquire a solid foundation & understanding
 TCP performance through such networks

Introduction: Performance Study of TCP

• Tools & techniques

	Scopes
Measurement	 Help users to reveal potential bottlenecks Detect inadequate parameters settings Test components reliability
Network simulation	 Provides a convenient way to predict the performance when the proposed network is not available for measurement Allows the evaluation of performance under a wide variety of workload & network Can incorporate more details than analytical modeling; results can be produced that are closer to reality
Analytical modeling	 TCP connections operating across the Internet is a huge control system. We need mathematical models to capture a system of this magnitude Convenience methods for design & optimization protocols

Full survey: M. Hassan and R. Jain. High Performance TCP/IP Networking: Concepts, Issues, and Solutions. Book 2003.

Introduction: Performance Study of TCP

- Main focus of this lecture
 - TCP analytical modeling
 - Objectives
 - Gain an understanding of the basic TCP operations, focusing on "Congestion Control"
 - Understand the fundamental relationship between network parameters and TCP performance
 - Apply a rage of "Mathematical Models" to predict TCP performance

- What is congestion?
 - Load is higher than capacity
- What do IP routers do?
 - Drop the excess packets
- Why is this bad?

- Congestion control
 - Keep senders from overloading the network
- Congestion window
 - Maximum data (bytes, packets) can be transmitted
- Upon *not detecting* congestion
 - Increase the window size
 - And see if the packets are successfully delivered
- Upon *detecting* congestion
 - Decrease the window size

- Slow-start (SS) phase
 - Initially, CW is 1 Max Segment Size (MSS)
 - So, initial sending rate is MSS/RTT (slow rate)
 - Increases the rate exponentially
 - cwnd=2*cwnd_{preivous}
 - Until cwnd reaches SS threshold (ssthresh)
 - Switch to the next phase

- Congestion Avoidance (CA) phase
 - Increases the rate linearly
 - cwnd=1+cwnd_{preivous}
 - Until cwnd reaches Maximum CW

Congestion indications

- Congestion indications
 - Timeout
 - Packet *n* is lost and detected via a timeout
 - E.g., because all packets in flight were lost
 - Serious congestion

- Congestion indications
 - Triple duplicate ACK
 - Packet *n* is lost, but packets *n*+1, *n*+2, etc. arrive
 - Receiver sends duplicate acknowledgments

Congestion reactions

- Congestion window trace

TCP variants comparison

	Congestion indications	Congestion reactions		
Tahoe	Packet losses	Only TO for congestion indication Reduce window to one & go to SS phase		
Reno NewReno SACK	Packet losses	 Time-out: Reduce window to one & go to SS phase TD ACK: Reduce window by a half & go to CA phase 		
Vegas	Packet losses & RTT delays	Time-out and TD ACK: similar to Reno/NewReno/SACK Keep adjusting RTT delays: Diff=f(W,RTT) CA phase - Diff <anpha: cwnd++<br="">- Diff>beta: cwnd - anpha<=Diff<=beta: cwnd=cwnd SS phase - Diff>gamma: go to CA phase Typically, comma=(amba4bata)/2; cmba=2; 2<=beta<=4</anpha:>		
		gamma=(anpha+beta)/2; anpha=2; 2<=	=beta<=4	15

• TCP variants comparison

Congestion window trace

TCP variants comparison

		Response to multiple packet losses		
Re	eno	Problem with "multiple packet losses in one window" With <i>n</i> packet losses, cwnd->cwnd/2, cwnd/4,, cwnd/(2^n) Reducing cwnd multiple times. When cwnd is too small, TO may happen due to the lack of ACKs		
Ne	ewReno	With <i>n</i> packet losses within a trans window, Reducing cwnd one time		
SA	ACK	Reno/NewReno: detection of single lost packet, and re-transmission of one lost packet per RTT TO due to the lack SACK (selective acknowledgements): detection of multiple of ACKs for pck #3 and re-transmission of more than one lost packet per RTT		
) 1	2 3	nd=10 1st TD ACK cwnd=5 2nd TD ACK 4 5 6 7 8 9 1 10 11 2nd TD ACK		
	XX			
	CK0	CK0 CK0 CK0 17		

TCP variants comparison

TCP variants comparison

TCP Modeling

Objectives

- Understand the fundamental relationship between network parameters and TCP performance
 (Throughput, delay,...)<->(packet loss, round-trip time, topology,...)
- Apply a rage of mathematical models to predict TCP performance

TCP Modeling

• Scope

- study window evolution in terms of cycles
- Cycle: period between two consecutive loss events
- The steady state TCP throughput

 $Th = \frac{Avg \ number \ of \ packets \ sent \ per \ cycle}{Avg \ duration \ of \ a \ cycle}$

Periodic Model

- The simplest model for TCP throughput
- Assumptions
 - Infinitely long TCP flow
 - Bernoulli losses: packets are lost with a fixed probability *p*, independently of others
 - Consider periodic TD ACK losses

Detailed Packet Loss Model

- Consider
 - Time-out and TD ACK losses
 - Correlated losses: packets are lost with a fixed probability *p*, independently of others; until first packet lost, remaining window packets are lost

– Maximum CW (W_m)

Detailed Packet Loss Model

Detailed Packet Loss Model

$$Th = \frac{E[A^{CA}] + E[A^{BO}]}{E[L^{CA}] + E[L^{BO}]} = \frac{E[A^{TD}]E[n^{TD}] + E[A^{BO}]}{E[L^{TD}]E[n^{TD}] + E[L^{BO}]}$$
$$E[.] = f(p, RTT, T_0)$$

Ex:

- The number of TOs in a BO phase has a geometric distribution: $P(R = k) = p^{k-1}(1-p)$ $\rightarrow E[A^{BO}] = \sum_{k=1}^{\infty} kP(R = k) = 1/p$

Detailed Packet Loss Model

Ex:

-The duration of a sequence with k TOs is

$$L_{k} = \begin{cases} (2^{k} - 1)T_{0}, k \le 6 \\ [63 + 64(k - 6)]T_{0}, k > 6 \end{cases}$$

$$\to E[L^{BO}] = \sum_{k=1}^{\infty} L_{k}P(R = k) = T_{0} \frac{1 + p + 2p^{2} + 4p^{3} + 8p^{4} + 16p^{5} + 32p^{6}}{1 - p}$$

And so on, see (*) for full derivations

*Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP throughput: a simple model and its empirical validation.

Detailed Packet Loss Model

Markov Chain Model

- Chain keeps track of TCP operation through
 - Phases: CA, SS, BO, TO
 - Parameters, e.g., window size, ssthresh and back-off counter.
- Allows more "careful" models

Markov Chain Model

• Observe TCP operation at a cycle & capture its status

Markov Chain Model

State space

Markov Chain Model

State connection

Markov Chain Model

• An example of Markov chain for $W_m = 8$, Max_BO=6

Over Free-Space Optical Atmospheric Turbulence Channels. JOCN 2013

Markov Chain Model

- Mathematical expression
 - Let $P = [p_1 p_2 \dots p_N]$ be the matrix of steady-state probabilities, where p_i is the probability of the *i*-th state in the equilibrium
 - Let $Q = [q_{ij}]$ be the transition matrix of the Markov chain with an element q_{ij} being the transition probability from the state *i* to the state *j*
 - q_{ij} =f(packet loss, CW, phase): pre-calculated

Markov Chain Model

• Mathematical expression

q_{ij}=f(packet loss, CW, phase): pre-calculated

Over Free-Space Optical Atmospheric Turbulence Channels.

Markov Chain Model

• Mathematical expression

$$\begin{cases} P = Q \times P \longrightarrow \text{the global balance equations} \\ \sum_{i=1}^{N} p_i = 1 \quad \text{\rightarrowthe normalization condition} \end{cases}$$

- Solve the set of Eqs by
 - Using Matlab to calculate Matrix equations
 - (or) Jacobi, Gauss-Seidel

• Having $[p_1 p_2 ... p_N]$, calculate throughput $Th = \frac{\sum p_i CW_i}{\sum p_i RTT_i}$

• Comparisons

- Periodic Model/Detailed Packet Loss Model: closed form expressions
- Markov chain:
 - exact form expression, thus having the highest accuracy
 - increasing Max CW significantly increases the state space, thus resulting in high complexity in deriving Markov chain

Comparisons

Advantages

- In most case, throughput is given in closed form
 - Possible to investigate directly how different parameters like pack loss, RTT & Max CW impart throughput
- Disadvantages
 - Primary network parameters like topology & traffic are not taken into account
 - Consider for only one single TCP flow

"Single session & black-box network"

• Scope

- Modeling of multiple TCP flows in arbitrary network
- Combining TCP & network models into a framework for TCP-network modeling
- "Multiple sessions & network-aware"

- Consider the simplest scenario
 - *N* flows going through a bottleneck router
 - Objective: TCP performance & queue performance

Approach

- View from queue
 - Arrival traffic: aggregated TCP traffics (*C*)
 - Packet loss: blocking pro (p) due to the limited buffer
- View from TCP sources
 - All flows see same loss probability, p
 - TCP traffic rates (*throughput*)=*Th*(*p*, *RTT*)

• Approach

– Solve a *fixed point* problem for *p*

– Having *p, calculate*

- TCP performance: *Th(.)*
- Queue performance: *Queue_loss(.), Queue_delay(.)*

- Related studies
 - Different TCP source modeling:
 - Periodic model, detailed packet loss model, Markov chain model (renewal theory models)
 - Different queue modeling:
 - M/M/1/B, M/D/1/B
 - Extended network topology: multiple routers

Advantages

- Well combine examined models for TCP sources and for network
- Possible take into account critical network characteristics: topology, no. of flows
- Disadvantages
 - Numerical methods used to find the fixed-point in some frameworks require a great duel of implementation work. Ex: multiple routers ->need find a multi-dimensional fixed point

Motivations

- View from queue
 - So far, consider passive queue management
 - Packet drop event may cause senders to back-off
 - No early congestion warning
 - Possibly play an active role in controlling TCP connection by active queue management (AQM)
 - Perform preventive random packet drop before the buffer is full
 - Provide a feedback mechanism to notify senders of the onset of congestion
- TCP/AQM modeling

• A model of control theory approach

Network congestion signal: m(p)Price (sending cost): p (loss rate, delay, etc.) TCP sending rate update rule: $x_s(t+1)=F_s(x_s(t), m(p(t)))$ AMC price update rule: $p(t+1) = G(\sum x_s(t), p(t))$

• Approach

- Can reuse fixed-point methods

– Combine with network optimization

- Maximizing the different betw utilization and sending cost
- -> Design AMC operation (RED algorithm)

• Advantages

- More insight interactions betw TCP sources & network
- Possibly optimize TCP/AQM operations
- Disadvantages
 - Require feedback
 - Cost of increased complexity

TCP Modeling: TCP Modeling Comparisons

	Advantages & Disadvantages	Performance analysis	Protocol design
Renewal theory	 Single session & black-box network Simple, most popular 	•••	
Fixed- point	 Multiple sessions & network-aware Complex numerical analysis 	•••	
Control theoretic	 Multiple sessions & network-aware a network optimization Require feedback Cost of increased complexity 	•••	•••

Summary

• Review TCP

- Congestion control
 - Time-out, TD ACK, Delay RTT
 - SS, CA, TO, BO
- TCP variants
 - Tahoe, Reno, NewReno, SACK, Vegas
- Survey TCP modeling
 - Renewal theory
 - Simple, detailed packet loss & Markov chain models
 - Fixed-point
 - Control theoretic

Recommended References

Short list	Contents	
[1] M. Hassan and R. Jain. High Performance TCP/IP Networking: Concepts, Issues, and Solutions. Book 2003.	Review: TCP/IP fundamentals Review: Performance study of TCP/IP (measurement, simulation, modeling)	
[2] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP throughput: a simple model and its empirical validation. SIGCOM 1998.	Renewal theory: detailed packet loss model	
[3] Vuong V. Mai, Truong C. Thang, and Anh T. Pham. Performance of TCP Over Free-Space Optical Atmospheric Turbulence Channels. JOCN 2013.	Renewal theory: Markov chain model Renewal theory: Matlab codes <u>https://drive.google.com/folderview?</u> id=0B1dp1Sn8XIvCVEVPSIpRNIBFcW8& usp=sharing	
[4] Ols'en, J Stochastic Modeling and Simulation of the TCP Protocol. Ph.D thesis 2003.	Survey: TCP modeling (Renewal theory, Fixed-point, Control theoretic)	

My Related Studies

Performance of TCP over Free-Space Optical **Atmospheric Turbulence Channels** Throughput [kB/s] $- C_n^2 = 10^{-15}$ $- C_n^2 = 6 \times 10^{-11}$ $- C_n^2 = 10^{-14}$ $- C_n^2 = 2 \times 10^{-14}$ $- C_n^2 = 5 \times 10^{-14}$ 10└ 10 SNR [dB]

My Related Studies

Throughput Analysis of TCP over Visible Light Communication Indoor Networks

