Quantum Key Distribution

Takihara Yudal 3d year undergraduate student
The University of Aizu

Contents

. Why do we need Quantum Key Distribution(QKD)

. What is the Quantum Key Distribution(QKD)?

. How QKD works ?

3.1 What is the BB84 Protocol ?
3.2 How the BB84 Protocol works ?

. The algorithm and simulation in Python

4.1 The algorithm and simulation for BB84

1. Why do we need the Quantum Key
Distribution(QKD)?

1 Why do we need the Quantum Key Distribution?

- Problem of Symmetric cryptography (The method that use secret key for encryption and
decryption)

- Key exchanging : How can Alice and Bob can agree on the secret key?
-Solution

>> Asymmetric cryptography (The method uses two types of keys : private key and
public key)

- Computational secure : guarantees the security with reasonable assumptions about an
adversary’s capabilities

But in the near future........
>> Quantum computers (Computers with unusually fast processing speeds)
>>The algorithm of complex mathematical calculations(eg RSA) are easily deciphered.

— New key distribution method needed

2. What is Quantum Key Distribution(QKD)?

2 What is the Quantum Key Distribution?

Quantum Key Distribution is a technology that relies on quantum physics to secure the
distribution of symmetric encryption keys

Encryption Ciphertext mcmhertext Decryption
Algorithm E\V)/ Algorithm

*Quantum channel
-Used for distribution

of Qubit. , ! Plaintext Plaintext
-Prevent information
leakage and LY 3B
interception SR / Secret
: key & key
*Public channel SAANEE ERLA VMRS SRR (e BTN 8 ¢ 2 M 0 L) AR N AU W WA 1y |
-share basis | QKD ;
-announce the result System
>
of measurement Quantum channel SIND :
> transmitter

Public channel

3. How QKD works?

3 How QKD works?
Operatlng scheme
-Prepare and measure

- Entanglement-based

Implementation

i) BB84
Selt S R e The popular protocol for Quantum
- Continuous-variable e hyduier
This protocol is named after the
-Non-coherent CV initials of the two developers and the

year this protocol was published

\.3.2 How the BB84 Protocol works?

Step1: Alice sends a photon(Qubit) to Bob through Quantum

Create truly Channel.
random unique

sources of Alice
randomness

represent a state
of polarized
photon with Qubit

Bob

Quantum Random
Number Generator

Bit value Basis <~ :0

Polarized Photon

Polarized photons
_ 7\

Quantum Random
Number Generator

Voo

Bit value

0

0

1

Basis
1 e ~+-:0
DRSS E)
Communicate through Quantum Channel }
Basis Polarization Qubit state
e > 0)
X @ |+)
s % 1)
X =)

§‘f How the BB84 Protocol works?
» St

2 : Bob measure Alice’s photon based on his basis and derive bit value as
outcome. After that, Bob sends his basis to Alice through public channel.

Step3 : Alice compares Bob's basis to her own basis.

Alice

Bob
Step?2

FoANCONSESE A eIl I
| |
: .
I and - I
| |
| |
| , |
: E;’giss Alice’s his outco |
: photon basis me |
| 7L | i
| |
| |
1 public € :
: channel :
Ifed AR YTl oty oo |

1

\&.2 How the BB84 Protocol works?
)

Alice Bob
Step?
= e e e e
|
1
:
: |
BOb, c AIice’s his outco :
basis photon basis - !
X ‘ :
1
|
| public T€ :
channel :
|
.

3.2 How the BB84 Protocol works?

Step4 : Alice discards bit value she prepared in Step1 if Bob’s basis is different from her.
Bob keeps the outcome derived in Step2 if his basis is the same as Alice’s.
=> This process is called sifted key.

Alice Bob
Bit Basis State Basis State outcome(bit) sifted key

—1

T
l

0 0

——

1 1

T
l

g O~
Q

0 Sl Y\ >< /Q/ 0 discarded
1 R CP R >< R discarded
0 >< /d :‘: @ Y discarded
: >< \(k C:} 1 discarded
Gl R X R

1 DGR DG SRS |

3.2 How the BB84 Protocol works?

Step5: Alice and Bob perform post-processing procedures to correct error in their keys
and increase the secrecy of their key.

Stepé6 : Alice and Bob share a secret key.

4. The Algorithm and simulation in Python

4 The algorithm and simulation in python

- Represent Qubit as vector.

>> Use a classical computer to simulate how BB84 programs would act on an ideal

qgquantum device by using matrix multiplication.

main function

The quantum program
sends instructions to a
digital signal processor or
other classical hardware
used to control a quantum
system.

Classical Quantum
Write a Python program on comniiter / ~Aamniitor
their classical computer that S EEe / At ol | £
sends instructions to an 7
TESIFE R el & GUETIU Ces: > Quantum program - Digital signal processor
Quantum Device Interface —
Quantum Device

Define what instructions 7
(Hadamard operation

and measure) are
available for a quantum
device.

One way of implementing
the interface for a
quantum device is by
using a classical computer
to simulate quantum
mechanics.

Simulator backend

Linear algebra package

41 The algorithm and simulation for BB34

Alice

Quantum Random
Number Generator

A 70
NS N
Bit value Basis +:0
>< 1

Derive Qubit

Bob

Quantum Random

Number Generator

1{0,1}

Basis
0
1

>< ;

‘—1_’ Rectilinear basis

>< Diagonal basis

key.

value

If the basis matches,
applying to shifted

If not, discard bit

Measure Qubit

Compare each basises

l

Discard bit value

> Apply to sifted key

4.1 The algorithm and simulation for BB84

' ')
Alice side's
QRNG for bit value
output : 1 output : 0
X operation QRNG for basis
output:1->>< AL N f
OUtput 3 |1) inPUt : Io) N
input : |1)
: Hadamard IO)
QRNG for basis ST
output : 1 ->
input :VWO \ output : |+)
Hadamard |1> |+>
operation

\ output : |-)

-)

4.1 The algorithm and simulation for BB84

Bob side’s

Apply the Hadamard QRNG for bit basis
operation to the Qubit to output: 1> X<

make sure you get 0 or 1. input : {|+), |-)}

Hadamard Operation

L » »

1) 10) - \

1 0

4.1 The algorithm and simulation for BB84

Simulation in python code

Alice applies a one-time-pad to message(plaintext) to be sent to Bob using a secret
key
-One-time-pad -> XOR with message and private key

message secret key SR YL ciphertext
XOR

Bob applies a one-time-pad to ciphertext using a secret key >> Get message(plaintext)

ciphertext XOR secret key s message

4.2 The algorithm and simulation for BB84

Result of simulation

yudai@wlan—-napt-005| ~/qkd/chapter3 5

> python3 bb84.py
Generating a 96-bit key by simulating BB84...
Took 173 rounds to generate a 96-bit key.
Got key 0xb0a8f2516bb3fc773618702.
Using key to send secret message: 0xd83ddc96d83ddc@dd83ddchbb.
Encrypted message: 0xd33753b3ce86e3caab525bb9.
Bob decrypted to get: 0xd83ddc96d83ddcodd83ddcbb.

yudai@wlan-napt-005] ~/qgkd/chapter3 5
> python3 bb84.py
Generating a 96-bit key by simulating BB84...
Took 198 rounds to generate a 96-bit key.

Got key 0x76atbc81a54c09c42018438c.
Using key to send secret message: 0xd83ddc96d83ddc@dd83ddcbb.
Encrypted message: 0xae9260177d71d5¢c9f8c59137.
Bob decrypted to get: 0xd83ddc96d83ddc0dd83ddchb.

yudai@wlan—-napt-005! ~/gkd/chapter3 5

> python3 bb84.py
Generating a 96-bit key by simulating BB84...
Took 192 rounds to generate a 96-bit key.
Got key 0xd16e246a1dd874677bf4e6ab6.
Using key to send secret message: 0xd83ddc96d83ddc@dd83ddchbb.
Encrypted message: 0x953f8fcc5e5a86aa3c93ald.
Bob decrypted to get: 0xd83ddc96d83ddc@dd83ddchb.

Thank for listening

21

