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1 Why do we need the Quantum Key Distribution?

- Problem of Symmetric cryptography (The method that use secret key for encryption and
decryption)

- Key exchanging : How can Alice and Bob can agree on the secret key?
-Solution

>> Asymmetric cryptography ( The method uses two types of keys : private key and
public key )

- Computational secure : guarantees the security with reasonable assumptions about an
adversary’s capabilities

But in the near future........
>> Quantum computers (Computers with unusually fast processing speeds)
>>The algorithm of complex mathematical calculations(eg RSA) are easily deciphered.

— New key distribution method needed



2. What is Quantum Key Distribution(QKD)?



2 What is the Quantum Key Distribution?

Quantum Key Distribution is a technology that relies on quantum physics to secure the
distribution of symmetric encryption keys
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3. How QKD works?



3 How QKD works?
Operatlng scheme
-Prepare and measure

- Entanglement-based

Implementation

i ) BB84
Selt S R e The popular protocol for Quantum
- Continuous-variable e hyduier
This protocol is named after the
-Non-coherent CV initials of the two developers and the

year this protocol was published



\.3.2 How the BB84 Protocol works?

Step1: Alice sends a photon(Qubit) to Bob through Quantum
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§‘f How the BB84 Protocol works?
» St

2 : Bob measure Alice’s photon based on his basis and derive bit value as
outcome. After that, Bob sends his basis to Alice through public channel.

Step3 : Alice compares Bob's basis to her own basis.
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\&.2 How the BB84 Protocol works?
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3.2 How the BB84 Protocol works?

Step4 : Alice discards bit value she prepared in Step1 if Bob’s basis is different from her.
Bob keeps the outcome derived in Step2 if his basis is the same as Alice’s.
=> This process is called sifted key.
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3.2 How the BB84 Protocol works?

Step5: Alice and Bob perform post-processing procedures to correct error in their keys
and increase the secrecy of their key.

Stepé6 : Alice and Bob share a secret key.



4. The Algorithm and simulation in Python



4 The algorithm and simulation in python

- Represent Qubit as vector.

>> Use a classical computer to simulate how BB84 programs would act on an ideal

qgquantum device by using matrix multiplication.

main function

The quantum program
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41 The algorithm and simulation for BB34
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4.1 The algorithm and simulation for BB84
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4.1 The algorithm and simulation for BB84

Bob side’s

Apply the Hadamard QRNG for bit basis
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4.1 The algorithm and simulation for BB84

Simulation in python code

Alice applies a one-time-pad to message(plaintext) to be sent to Bob using a secret
key
-One-time-pad -> XOR with message and private key

message secret key SR YL ciphertext
XOR

Bob applies a one-time-pad to ciphertext using a secret key >> Get message(plaintext)

ciphertext XOR secret key s message




4.2 The algorithm and simulation for BB84

Result of simulation

yudai@wlan—-napt-005| ~/qkd/chapter3 5

> python3 bb84.py
Generating a 96-bit key by simulating BB84...
Took 173 rounds to generate a 96-bit key.
Got key 0xb0a8f2516bb3fc773618702.
Using key to send secret message: 0xd83ddc96d83ddc@dd83ddchbb.
Encrypted message: 0xd33753b3ce86e3caab525bb9.
Bob decrypted to get: 0xd83ddc96d83ddcodd83ddcbb.

yudai@wlan-napt-005] ~/qgkd/chapter3 5
> python3 bb84.py
Generating a 96-bit key by simulating BB84...
Took 198 rounds to generate a 96-bit key.

Got key 0x76atbc81a54c09c42018438c.
Using key to send secret message: 0xd83ddc96d83ddc@dd83ddcbb.
Encrypted message: 0xae9260177d71d5¢c9f8c59137.
Bob decrypted to get: 0xd83ddc96d83ddc0dd83ddchb.

yudai@wlan—-napt-005! ~/gkd/chapter3 5

> python3 bb84.py
Generating a 96-bit key by simulating BB84...
Took 192 rounds to generate a 96-bit key.
Got key 0xd16e246a1dd874677bf4e6ab6.
Using key to send secret message: 0xd83ddc96d83ddc@dd83ddchbb.
Encrypted message: 0x953f8fcc5e5a86aa3c93ald.
Bob decrypted to get: 0xd83ddc96d83ddc@dd83ddchb.
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