Contents

Simulation for Quantum Key Distribution (research progress)

Takihara Yudai - 3rd year undergraduate student
The University of Aizu

1. What is the Quantum Key Distribution(QKD)?
2. BB84 Protocol
3. The algorithm and simulation in Python
4. Challenge

1. What is Quantum Key Distribution(QKD)?

Quantum Key Distribution is a technology that relies on quantum physics to secure the distribution of symmetric encryption keys

2. BB84 Protocol

D. Operating scheme

- Prepare and measure
- Entanglement-based

2. BB84 Protocol

- Implementation
- Discrete-variable
-Continuous-variable
- Non-coherent CV

The popular protocol for Quantum Key Distribution
This protocol is named after the initials of the two developers and the year this protocol was published

2. BB84 Protocol

Assume that sender and receiver generate a key for communication.

		$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{gathered} 0 \\ \ddagger \\ \downarrow \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{X} \\ \Sigma \end{gathered}$	$\begin{gathered} 0 \\ \ddagger \\ \downarrow \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{X} \\ & \mathbf{y} \end{aligned}$	$\begin{gathered} 0 \\ \ddagger \\ \downarrow \end{gathered}$		0 X \square		1
ving	Measurisg	+	+	中	+	X	X	X	X		+
		\leftrightarrow	1	\leftrightarrow	1	\downarrow	\leftrightarrow	\checkmark	\checkmark		\rightarrow
\bigcirc	Receined dis	1	0	1	0	1	1	0	0		1
	Bases nath	no	YES	no	YeS	YES	No	no	YEs		YES
	Defired tey	-	0	-	0	1	-	-	0		1

3. Simulation of BB84

3. Simulation of BB84

First, Alice generates randomly basis and bit value, and decides Qubit state, then she send the qubit to Bob.

3. Simulation of BB84

Alice.py

In "generate_alice_basis_and_bit_and_qubit()", the state of the qubit is changed by H - and X -operations, depending on the value of the generated bit and basis (default value is $[1,0]$).

3. Simulation of BB84

Second, Bob generates randomly basis and he decides his bit based on his basis and the qubit state which received from Alice in step 1.

$\underbrace{\text { dem }}_{\substack{\text { measurin } \\ \text { g basis }}}$	\ddagger	\pm	\pm	4	X	X	X	X	4
$\underbrace{\text { ate }}_{\substack{\text { Qubit } \\ \text { state }}}$	\leftrightarrow	1	\leftrightarrow	I	Σ	\mapsto	\checkmark	\nearrow	\leftrightarrow
(eatided	1	0	1	0	1	1	0	0	1

3. Simulation of BB84

Second, Bob generates randomly basis and he decides his bit based on his basis and the qubit state which received from Alice in step 1

$\underset{\substack{\text { measurin } \\ \mathrm{g} \text { basis }}}{\text { dem }}$	\pm	\pm	\pm	\pm	X	X	X	\mathbf{X}	\pm
$\underset{\substack{\text { Qubit } \\ \text { state }}}{\text { ate }}$	\leftrightarrow	\mathfrak{l}	\leftrightarrow	1	Σ	\mapsto	\nearrow	\checkmark	\mapsto
${ }_{\substack{\text { decided } \\ \text { Bob's bit }}}^{\text {den }}$	1	0	1	0	1	1	0	0	1

3. Simulation of BB84

Bob.py

measure_qubit_using_basi

In "measure_qubit_using_basis()", Bob measure Alice's qubit using Bob'basis. In concrete terms, the combination of the state of the qubit and the value of the basis $(0$ or 1) determines the bits of the bob.

3. Simulation of BB84

Next, Bob announces his basis to Alice. After that, Alice compares her basis to his basis. She announces notification of whether the basis is equal to each other. If it is the same, add bit value to key but if not, the bit value is discarded each other.

3. Simulation of BB84

Alice.py
Bob.py

3. Simulation of BB84

Result of key generation up to this step.

4. Challenge

4. Challenge

The rest of the post-processing
1 Parameter estimation : The procedure that Alice and Bob want to compute a guess for the error rate in the quantum channel.
2 Error correction : The procedure that Alice and Bob perform certain steps to correct errors in their keys and increase the secrecy of their key.

3 Privacy amplification: The procedure that minimizes Eve's knowledge of the key

