N\

\\k Contents

1. What is the Quantum Key Distribution(QKD)?

Simulation for Quantum Key Distribution fe Bedthiotocol

{fesEareh) progress) 3. The algorithm and simulation in Python

Takihara Yudai — 3rd year undergraduate student
The University of Aizu 4. Challenge

§ \\\L What is Quantum Key Distribution(QKD)?

Quantum Key Distribution is a technology that relies on quantum physics to secure
the distribution of symmetric encryption keys

1. What is Quantum Key Distribution(QKD)? Ea %E

BRLE N Algorith Algorith
+Used for distribution R L
of Qubit. Plaintext ‘ ‘
+Prevent information

leakage and &) o)
interception Share ey é Share key

I

Plaintext

*Public channel QKD

+share basis ; System o
sannounce nlOt.IfICalIOn QKD X Quantum channel " e
of whether the basis is equal ; transmitter >

to each other

Public channel

\

2. BB84 Protocol

N:

BB84 Protocol

Assume that sender and receiver generate a key for communication.

Transmitting
end

LEE
end 2

oo

Transmitted
bits
Transmission

Transmitted
information

Measuring
basis

Received
results

Received bits

Bases match

Derived key

0 QOB 1 ROREIE 0 1 [EROW
XdXPRPDPRDP
I N TN e e
b PbPdPXXXXP
1 GO 1 BONIIS 1 0 FEON I

NO YES NO YES YES NO NO YES YES
- G0F - Qe - - §Eyul

https://www.global.toshiba/ww/company/digitalsolution/articles/tsoul/38/004.htm|

\. BB84 Protocol

» =Operating scheme
-Prepare and measure
*Entanglement-based
*Implementation
*Discrete-variable
- Continuous-variable

*Non-coherent CV

%

3. Simulation of BB84

BB84

The popular protocol for Quantum
Key Distribution

This protocol is named after the
initials of the two developers and the
year this protocol was published

\3. Simulation of BB84

[]

§§. Simulation of BB84

//

First, Alice generates randomly basis and bit value, and decides Qubit state,

: Alice.py generate_alice_basis_and_bit_and_qu
then she send the qubit to Bob.
alice_bit, alice_basis, qubit = generate_alice_basis_and_bit_and_qubit(alice_device) N g[:?i:is}i,u:E::i;:iz‘;’:i;’m’q"m (atice devic
qubit.basis = alice_basis) sample_random_bit (alice_device) for
qubit.bit = alice_bit
A\ice.py Bob.py qubit_state

with alice_ sing_qubit() as q:

serialized_qubit = pickle,dumps(qubit) prepare_message_qubit(alice_bit, alice_basis, q)
qubit_state = g.state

] & /7 I N =N

q.state = qubit_state
return alice_bit, alice basis, q

client_socket. send(serialized_qubit)

of the qubit is changed by H-— and X—operations,

N 0 1 In “generate_alice_basis_and_bit_and_qubit()”, the state
basis
Ll

Rectilinear basis (0 WS) . .
ectilinear basis (0) + 1 [1, 0] (default) ([)9%071067811865475+0J] dependlng on the value of the generated bit and basis
(default value is [1, 0]).
Diagonal basis (1) X /" Bl e L IR R N, (R
9 10

%} Simulation of BB84 %} Simulation of BB84

; Second, Bob generates randomly basis and he decides his bit based Second, Bob generates randomly basis and he decides his bit based
on his basis and the qubit state which received from Alice in step 1. on his basis and the qubit state which received from Alice in step 1.
R B (R P N0 22 (I N 2 BN 52 R <+ NN R N R R B
Sor - 1 - ! N - 7 7 - Sor - 1 - ! N - 7 7 -
N U RN IR R 1 R R N U RN IR R 1 oA

®

%3. Simulation of BB84 %,}. Simulation of BB84

Bob.py measure_qubit_using_basi Next, Bob announces his basis to Alice. After that, Alice compares her basis
— ; to his basis. She announces notification of whether the basis is equal to each
serialized_qubit = client_socket. recv(1024) e) e A ey, (9 5 O TR el other. If it is the same, add bit value to key but if not, the bit value is discarded

qubit = pickle.loads(serialized_qubit)
ex(qubit.state[0, 01) == 0.4999999999999999+0; : each Other

ex(qubit.state[0, 0]) == 1+0j:

ex(qubit.statelo, 01) == 0j: Alice.py

bob_basis = sample_random_bit(bob_device)

$ o1 o Bob.py

bob_bit = measure_qubit_using_basis(qubit, bob_basis)

Bob announces his basis to

In “measure_qubit_using_basis()”, Bob measure Alice’s ARy

qubit using Bob’basis. In concrete terms, the Alice.py
combination of the state of the qubit and the value of
the basis (0 or 1) determines the bits of the bob.

Bob.py

same ! or not same !

Alice announces notification of whether
the basis is equal to each other 14

%3. Simulation of BB84 %,}. Simulation of BB84

® o
Alice.py Result of key generation up to this step.

bob_basis = client_socket.recv(1024).decode('utf-8')

if alice_basis == strtobool{bob_basis):

client_socket.send("Yes'.encode('utf-8')) P bob D1E))
siftedKey.append(int(alice_bit)) haidia sl il
if len(siftedKey) == keyLength: ;
break
else:
client_socket.send(*No" .encode(*utf-8'))

After Bob sends his basis, Alice receives the bases
from Bob So she compares each base with an if
construct. She then tells Bob the result of the
comparison (Yes or No). If Yes, a bit value is added as
part of the key, but each bits is discarded if not.

\ \4. Challenge
°® ® ° ®
' g The rest of the post—processing

1 Parameter estimation : The procedure that Alice and Bob
want to compute a guess for the error rate in the quantum
channel.

4. Challenge 2 Error correction : The procedure that Alice and Bob
perform certain steps to correct errors in their keys and
increase the secrecy of their key.

3 Privacy amplification : The procedure that minimizes
Eve’s knowledge of the key

Thank for listening

